Những câu hỏi liên quan
Cậu bé nhỏ nhắn
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 2 2019 lúc 21:21

Do \(x^2+y^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\)

\(\Leftrightarrow P=\dfrac{2sin^2a+12sina.cosa}{1+2sina.cosa+2cos^2a}=\dfrac{1-cos2a+6sin2a}{2+sin2a+cos2a}\)

\(\Leftrightarrow P\left(2+sin2a+cos2a\right)=1-cos2a+6sin2a\)

\(\Leftrightarrow\left(P-6\right)sin2a+\left(P+1\right)cos2a=1-2P\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(P-6\right)^2+\left(P+1\right)^2\ge\left(1-2P\right)^2\)

\(\Leftrightarrow P^2+3P-18\le0\Rightarrow-6\le P\le3\)

Vậy \(\left\{{}\begin{matrix}P_{max}=3\\P_{min}=-6\end{matrix}\right.\)

Phạm Minh Quang
Xem chi tiết
Yen Nhi
23 tháng 11 2021 lúc 12:34

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

Khách vãng lai đã xóa
Nguyễn Đức Việt
Xem chi tiết
Lê Song Phương
11 tháng 5 2023 lúc 21:53

Ta có \(a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left(\dfrac{\left(a+b\right)^2}{2}\right)^2}{2}=\dfrac{\left(a+b\right)^4}{8}\). Áp dụng cho biểu thức A, suy ra \(A\ge\dfrac{\left(x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\right)^4}{8}\). Ta tìm GTNN của \(P=x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\). Ta có 

\(P=x^2+\dfrac{1}{16x^2}+y^2+\dfrac{1}{16y^2}+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2\)

\(P\ge2\sqrt{x^2.\dfrac{1}{16x^2}}+2\sqrt{y^2.\dfrac{1}{16y^2}}+\dfrac{15}{16}\left(\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2}{2}\right)+2\)

    \(=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}.\left(\dfrac{4^2}{2}\right)+2\) \(=\dfrac{21}{2}\). Do đó \(P\ge\dfrac{21}{2}\) \(\Leftrightarrow A\ge\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\). Vậy GTNN của A là \(\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\), ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{2}\)

 

Nguyễn Đức Việt
Xem chi tiết
Nguyễn Đức Việt
11 tháng 5 2023 lúc 18:47

Gợi ý: \(\dfrac{a^4+b^4}{2}\ge\left(\dfrac{a+b}{2}\right)^4\)

Vũ Nguyễn Hiếu Thảo
Xem chi tiết
Kem Su
Xem chi tiết
trần gia bảo
Xem chi tiết
tth_new
23 tháng 2 2020 lúc 20:46

Làm phần min trước, Max để mai:

Ta chứng minh \(P\ge\frac{18}{25}\).

*Nếu x = 0 thì \(y^2=\frac{1}{2}\Rightarrow P=\frac{7}{4}>\frac{18}{25}\)

*Nếu x khác 0. Xét hiệu hai vế ta thu được:

\(\ge0\)

P/s: Nên rút gọn cái biểu thức cuối cùng lại cho nó đẹp và khi đó ta không cần xét 2 trường hợp như trên:D

Khách vãng lai đã xóa
tth_new
23 tháng 2 2020 lúc 20:49

Cách khác đơn giản hơn:

Đặt \(x+y=a;xy=b\Rightarrow a^2\ge4b\)

\(\Rightarrow2a^2-1=5b\) rồi rút thế các kiểu cho nó thành 1 biến là xong:D (em nghĩ vậy thôi chứ chưa thử)

Khách vãng lai đã xóa
Không Tên
23 tháng 2 2020 lúc 22:37

\(1+xy=2\left(x^2+y^2\right)\ge4xy\)    =>  \(xy\le\frac{1}{3}\)

\(1+xy=2\left(x^2+y^2\right)=2\left(x+y\right)^2-4xy\ge-4xy\) =>   \(xy\ge-\frac{1}{5}\)

=>  \(-\frac{1}{5}\le xy\le\frac{1}{3}\)

\(P=7.\left[\left(x^2+y^2\right)^2-2x^2y^2\right]+4x^2y^2\)

\(=7.\left(\frac{1+xy}{2}\right)^2-10x^2y^2=\frac{-33x^2y^2+14xy+7}{4}\)

đặt  \(t=xy\)

\(P=\frac{-33t^2+14t+7}{4}\)

........................

\(P_{min}=\frac{18}{25}\) tại  \(xy=-\frac{1}{5}\)

\(P_{max}=\frac{70}{33}\)  tại  \(xy=\frac{7}{33}\)

Khách vãng lai đã xóa
Hoàng Thị Mai Trang
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 2 2021 lúc 23:09

\(\left(x+\sqrt{x^2+2020}\right)\left(2y+\sqrt{\left(2y\right)^2+2020}\right)=2020\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y+\sqrt{\left(2y\right)^2+2020}=\sqrt{x^2+2020}-x\\x+\sqrt{x^2+2020}=\sqrt{\left(2y\right)^2+2020}-2y\end{matrix}\right.\)

\(\Rightarrow x+2y+\sqrt{x^2+2020}+\sqrt{\left(2y\right)^2+2020}=-x-2y+\sqrt{x^2+2020}+\sqrt{\left(2y\right)^2+2020}\)

\(\Leftrightarrow2\left(x+2y\right)=0\)

\(\Leftrightarrow x=-2y\)

\(\Rightarrow B=2y^2-8y^2+3y^2-2y+3y+15\)

\(\Rightarrow B=-3y^2+y+15=-3\left(y-\dfrac{1}{6}\right)^2+\dfrac{181}{12}\)

\(B_{max}=\dfrac{181}{12}\) khi \(y=\dfrac{1}{6}\)

VUX NA
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 8 2021 lúc 22:04

\(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le\dfrac{1}{4}\)

Đặt \(\dfrac{x}{y}=a\Rightarrow0< a\le\dfrac{1}{4}\)

\(P=\dfrac{\left(\dfrac{x}{y}\right)^2-\dfrac{2x}{y}+2}{\dfrac{x}{y}+1}=\dfrac{a^2-2a+2}{a+1}=\dfrac{4a^2-8a+8}{4\left(a+1\right)}=\dfrac{4a^2-13a+3+5\left(a+1\right)}{4\left(a+1\right)}\)

\(P=\dfrac{5}{4}+\dfrac{\left(1-4a\right)\left(3-a\right)}{4\left(a+1\right)}\ge\dfrac{5}{4}\)

Dấu "=" xảy ra khi \(a=\dfrac{1}{4}\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)