cho hình chóp s.abc có đáy là tam giác đều cạnh a. tam giác SAB cân tại S và thuộc mặt phẳng vuông góc với đáy. Biết SC tạo với đáy 1 góc 60 độ. Gọi M là trung điểm BC. COsin góc tạo bới SM và mặt đáy ?
cho hình chóp s.abc có đáy là tam giác đều cạnh a. tam giác SAB cân tại S và thuộc mặt phẳng vuông góc với đáy. Biết SC tạo với đáy 1 góc 60 độ. Gọi M là trung điểm BC. COsin góc tạo bới SM và mặt đáy ?
Cho hình chóp tam giác S.ABC có đáy là tam giác đều cạnh a. Tam giác SAB cân tại S và thuộc mặt phẳng vuông góc với đáy. Biết SC tạo với đáy một góc 60 o , gọi M là trung điểm của BC. Cosin góc tạo với SM và mặt đáy là?
A. cos φ = 6 3
B. cos φ = 1 10
C. cos φ = 3 3
D. cos φ = 3 10
Đáp án: B.
§ Hướng dẫn giải:
Gọi H là trung điểm của AB khi đó S H ⊥ A B
Mặt khác ( S A B ) ⊥ ( A B C ) suy ra S H ⊥ ( A B C ) .
Khi đó C H = a 3 2
Do M là trung điểm của BC nên H M = B C 2 = a 2
Cho hình chóp S.ABCD có đáy là hình vuông, gọi M là trung điểm của AB. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết SD = a 3 , SC tạo với mặt phẳng đáy (ABCD) một góc 60°. Thể tích khối chóp S.ABCD theo a là
A. 4 a 3 3
B. 3 a 3 10
C. 4 a 3 15 5
D. 2 a 3 15 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B ; A B = 3 a ; B C = 4 a . Cạnh bên SA vuông góc với mặt phẳng đáy. Góc tạo giữa SC và mặt phẳng đáy bằng 60 ° . Gọi M là trung điểm của AC. Khoảng cách giữa hai đường thẳng AB và SM bằng
A. a 3
B. 10 a 3 79
C. 5 a 3
D. 5 a 2
Gọi N là trung điểm của BC, dựng hình bình hành ABNP.
Ta có:
Mà
Chọn: B
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a. Tam giác SAB cân tại S và thuộc mặt phẳng vuông góc với đáy. Biết đường thẳng SC tạo với đáy một góc 60°. Tính tan góc giữa 2 mặt phẳng (SCD) và (ABCD).
A. 15
B. 15 2
C. 15 5
D. 15 15
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SC. Biết . Thể tích của khối chóp S.ABC bằng
A. 3 2
B. 3 4
C. 3 6
D. 3 12
Cho hình chóp S.ABC có (SAB),(SAC) cùng vuông góc với mặt phẳng đáy, cạnh bên SB tạo với đáy một góc 60° đáy ABC là tam giác vuông cân tại B với BA = BC = a. Gọi M, N lần lượt là trung điểm của SB, SC. Tính thể tích của khối đa diện A.BMNC
A. a 3 3 4
B. a 3 3 6
C. a 3 3 24
D. a 3 3 8
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a tam giác ABC cân tại s và nằm trong mặt phẳng vuông góc với đáy SB tạo với mặt đáy một góc 30 độ M là trung điểm của BC Tính thể tích khối chóp S.ABC và khoảng cách giữa SB và AM tttheoa
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SC. Biết V S . A B H V S . A B C = 16 9 . Thể tích của khối chóp S.ABC bằng
A. 3 2
B. 3 4
C. 3 6
D. 3 12
Gọi O là trung điểm của AB
Ta có
Trong tam giác vuông SOC có
Ta có
Vậy
Chọn C.
Cho hình chóp S.ABCD có đáy là hình vuông, gọi M là trung điểm của AB. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết SD = a 3 , SC tạo với mặt phẳng đáy (ABCD) một góc Thể tích khối chóp S.ABCD theo a là
A. 4 a 3 3 .
B. 3 a 3 10 .
C. 4 a 3 15 5 .
D. 2 a 3 15 3 .