Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Châu Cẩm Tú
Xem chi tiết
Phạm Minh Quân
Xem chi tiết
Học đi
Xem chi tiết
lê thị hương giang
9 tháng 7 2018 lúc 14:00

Bài 1 :

\(e,x^2+2xy+y^2-2x-2y+1\)

\(=\left(x+y-1\right)^2\)

Bài 2:

\(b,2x^3+3x^2+2x+3=0\)

\(\Leftrightarrow\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)

\(\Leftrightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow2x+3=0\left(x^2+1>0\right)\)

\(\Leftrightarrow x=-\dfrac{3}{2}\)

Nguyễn Công Tỉnh
9 tháng 7 2018 lúc 12:06

Những hằng đẳng thức đáng nhớ

Những hằng đẳng thức đáng nhớ

Megurine Luka
Xem chi tiết
Dương Thế Duy
2 tháng 5 2017 lúc 8:53

a,=19/5x^4y^3

b,Hệ số:19/5

Bậc:7

c;=152/5

Dương Thị Yến Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 6 2022 lúc 22:08

Câu 1: 

\(\dfrac{A}{B}=\dfrac{4x^{n+1}y^2}{3x^3y^{n-1}}=\dfrac{4}{3}x^{n-2}y^{2-n+1}=\dfrac{4}{3}x^{n-2}y^{3-n}\)

Để A chia hết cho B thì \(\left\{{}\begin{matrix}n-2>=0\\3-n>=0\end{matrix}\right.\Leftrightarrow2\le n\le3\)

Bài 2: 

\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)-2\left(x+y\right)\left(x-y\right)+3\left(x+y\right)^2}{x+y}\)

\(=x^2-xy+y^2-2\left(x-y\right)+3\left(x+y\right)\)

\(=x^2-xy+y^2-2x+2y+3x+3y\)

\(=x^2-xy+y^2+x+5y\)

Trần Bảo Hân
Xem chi tiết
Nguyễn Thị Thùy
Xem chi tiết
Phạm Minh Quân
Xem chi tiết
Xem chi tiết
Tokuda Satoru
12 tháng 6 2017 lúc 10:04

1.a, VT= \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\)\(\left(x^2+y^2-2xy\right)\left(x^2+y^2+2xy\right)=\left(x-y\right)^2\left(x+y\right)^2=VP.\left(đpcm\right)\)

b, VP=\(x\left(x-3y\right)^2+y\left(y-3x\right)^2\)\(=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)\(=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)

\(=x^3+3x^2y+3xy^2+y^3\)\(=\left(x+y\right)^3=VT\left(đpcm\right)\)

2. VT=\(\left(a+b\right)^3-\left(a-b\right)^3\)\(=\left(a+b-a+b\right)\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)

\(2b\left(b^2+3a^2\right)\)\(=VP\left(đpcm\right)\).

Kirigawa Kazuto
12 tháng 6 2017 lúc 10:04

a) (x2 + y2)2 - (2xy)2

= [(x2 + y2) - 2xy].[(x2 + y2) + 2xy]

= [x2 + y2 - 2xy].[(x2 + y2 + 2xy]

= (x - y)2 . (x + y)2

Rain Tờ Rym Te
12 tháng 6 2017 lúc 10:14

a \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x+y\right)^2\left(x-y\right)^2\)

Ta có : \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x^2+y^2+2xy\right)\left(x^2+y^2-2xy\right)\)

\(=\left(x+y\right)^2\left(x-y\right)^2\)

b) \(\left(x+y\right)^3=x\left(x-3y\right)^2+y\left(y-3x\right)^2\)

ta có: \(x\left(x-3y\right)^2+y\left(y-3x\right)^2\)

\(=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)

\(=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)

= \(x^3+3x^2y+3xy^2+y^3\)

\(=\left(x+y\right)^3\)

2. \(\left(a+b\right)^3-\left(a-b\right)^3=2b\left(b^2+3a^2\right)\)

Ta có: \(\left(a+b\right)^3-\left(a-b\right)^3=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3\)

= \(2b^3+6a^2b\)

\(=2b\left(b^2+3a^2\right)\)