Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

1, Chứng minh các đẳng thức :

a, \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x+y\right)^2\left(x-y\right)^2\)

b, \(\left(x+y\right)^3=x\left(x-3y\right)^2+y\left(y-3x\right)^2\)

2, CMR : \(\left(a+b\right)^3-\left(a-b\right)^3=2b\left(b^2+3a^2\right)\)

Tuấn Anh Phan Nguyễn

Tokuda Satoru
12 tháng 6 2017 lúc 10:04

1.a, VT= \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\)\(\left(x^2+y^2-2xy\right)\left(x^2+y^2+2xy\right)=\left(x-y\right)^2\left(x+y\right)^2=VP.\left(đpcm\right)\)

b, VP=\(x\left(x-3y\right)^2+y\left(y-3x\right)^2\)\(=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)\(=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)

\(=x^3+3x^2y+3xy^2+y^3\)\(=\left(x+y\right)^3=VT\left(đpcm\right)\)

2. VT=\(\left(a+b\right)^3-\left(a-b\right)^3\)\(=\left(a+b-a+b\right)\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)

\(2b\left(b^2+3a^2\right)\)\(=VP\left(đpcm\right)\).

Kirigawa Kazuto
12 tháng 6 2017 lúc 10:04

a) (x2 + y2)2 - (2xy)2

= [(x2 + y2) - 2xy].[(x2 + y2) + 2xy]

= [x2 + y2 - 2xy].[(x2 + y2 + 2xy]

= (x - y)2 . (x + y)2

Rain Tờ Rym Te
12 tháng 6 2017 lúc 10:14

a \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x+y\right)^2\left(x-y\right)^2\)

Ta có : \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x^2+y^2+2xy\right)\left(x^2+y^2-2xy\right)\)

\(=\left(x+y\right)^2\left(x-y\right)^2\)

b) \(\left(x+y\right)^3=x\left(x-3y\right)^2+y\left(y-3x\right)^2\)

ta có: \(x\left(x-3y\right)^2+y\left(y-3x\right)^2\)

\(=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)

\(=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)

= \(x^3+3x^2y+3xy^2+y^3\)

\(=\left(x+y\right)^3\)

2. \(\left(a+b\right)^3-\left(a-b\right)^3=2b\left(b^2+3a^2\right)\)

Ta có: \(\left(a+b\right)^3-\left(a-b\right)^3=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3\)

= \(2b^3+6a^2b\)

\(=2b\left(b^2+3a^2\right)\)


Các câu hỏi tương tự
An Nhiên
Xem chi tiết
Nguyễn Thị Thùy Linh
Xem chi tiết
Diệp Thiên Giai
Xem chi tiết
Phạm Vũ Ngọc Duy
Xem chi tiết
Cô Bé Nhí Nhảnh
Xem chi tiết
Something Just Like This
Xem chi tiết
Hoàng Thu Trang
Xem chi tiết
Trần N.Anh
Xem chi tiết
Trần N.Anh
Xem chi tiết