tìm các số nguyên tố sao cho p+2 và p+4 là các số nguyên tố
Bài 1:Tìm số nguyên tố p, sao cho p+2 và p+4 cũng là các số nguyên tố.
Bài 2. Cho p và 2p + 1 là các số nguyên tố ( p > 3). Hỏi 4p + 1 là số nguyên tố hay hợp số?
Bài 3:
a) Tìm số nguyên tố p,sao cho p + 4 và p + 8 cũng là các số nguyên tố.
b) Tìm số nguyên tố p, sao cho p + 6, p + 8, p + 12, p + 14 cũng là các số nguyên tố.
Bài 4: Tìm số tự nhiên nhỏ nhất có 12 ước số.
Bài 5: Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau: a) 7n + 10 và 5n + 7 ; b) 2n + 3 và 4n + 8
c) 4n + 3 và 2n + 3 ; d) 7n + 13 và 2n + 4 ; e) 9n + 24 và 3n + 4 ; g) 18n + 3 và 21n + 7
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Bài 3:
a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố
p + 8 = 2 + 8 = 10 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố
p + 8 = 3 + 8 = 11 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố
p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p > 3 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất
Bài 18: Hãy so sánh 20152015 - 20152014 và 20152016 - 20152015
Bài 21: Tìm số nguyên tố p, sao cho p+2 và p+4 cũng là các số nguyên tố
Bài 22: Tìm số nguyên tố p, sao cho p+1 và p+3 cũng là các số nguyên tố
Bài 18:
Ta có:
\(2015^{2015}-2015^{2014}=2015^{2014}\cdot\left(2015-1\right)=2015^{2014}\cdot2014\)
\(2015^{2016}-2015^{2015}=2015^{2015}\cdot\left(2015-1\right)=2015^{2015}\cdot2014\)
Mà: \(2014< 2015\)
\(\Rightarrow2015^{2014}< 2015^{2015}\)
\(\Rightarrow2015^{2014}\cdot2014< 2015^{2015}\cdot2014\)
\(\Rightarrow2015^{2015}-2015^{2014}< 2015^{2016}-2015^{2015}\)
Vậy: ...
2. Tìm số nguyên tố b sao cho b + 2 và b + 4 cũng là các số nguyên tố
3. Một số nguyên tố p có số dư r là hợp số . Tìm số dư r.
4. Có bao nhiêu số nguyên tố nhỏ hơn 100. Tổng của các số nguyên tố < 100 là số chẵn hay số lẻ?
5. Tìm 4 số nguyên tố liên tiếp sao cho tổng của chúng là số nguyên tố
- Giúp tớ cách làm nhé, cảm ơn.
Nếu p = 2 thì p + 2 = 4 và p + 4 = 6 đều không phải là số nguyên tố.
Nếu p 3 thì số nguyên tố p có 1 trong 3 dạng: 3k, 3k + 1, 3k + 2 với k N*.
+) Nếu p = 3k p = 3 p + 2 = 5 và p + 4 = 7 đều là các số nguyên tố.
+) Nếu p = 3k +1 thì p + 2 =3k+3-3
2. Giả sử b = 2
=> b + 2 = 2 + 2 = 4 ( không thoả mãn)
b = 3
=> b + 2 = 3 + 2 = 5, b + 4 = 3 + 4 = 7 ( thoả mãn)
=> b bằng 3 là một giá trị cần tìm
Xét b > 3 : Suy ra b có hai dạng 3k + 1 và 3k +2.
Với b có dạng 3k +1 => b + 2 = 3k +1 +2 = 3k + 3 chia hết cho 3 mà b là số nguyên tố lớn hơn 3 => không thoả mãn
Với b có dạng 3k + 2 => b + 4 = 3k +2 + 4 = 3k + 6 mà b là số nguyên tố lớn hơn 3 => không thoả mãn
Chứng tỏ mọi b lớn 3 đều không thoả mãn. Vậy b bằng 3 là giá trị cần tìm
2. Nếu b = 2 thì b+2=4;b+4=6 (hợp số)
Nếu b = 3 thì b+2=5;b+4=7 (nguyên tố)
Nếu b>3 thì có dạng là 3k+1 hoặc là 3k+2
Nếu b=3k+1 thì b+2=3k+3 (hợp số)
Nếu b=3k+2 thì b+4= 3k+6 (hợp số)
Vậy b=3
Tìm các số nguyên tố p sao cho:
p+2 và p+4 là các số nguyên tố
tìm số nguyên tố p sao cho p+2 và p+4 là các số nguyên tố
Với p = 2 thì p + 2 = 2 + 2 = 4 là hợp số (Loại)
Với p = 3 thì p + 2 = 3 + 2 = 5, p + 4 = 3 + 4 = 7 là các số nguyên tố (Thỏa mãn).
Với p > 3: p là số nguyên tố nên suy ra: p = 3k + 1 hoặc p = 3k + 2 (k ∈ N*).
+) p = 3k + 1: Ta có: p + 2 = 3k + 1 + 2 = 3k + 3 = 3.(k + 1) ⋮ 3 là hợp số (Loại)
+) p = 3k + 2: Ta có: p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) ⋮ 3 là hợp số (Loại).
Với p > 3 không có giá trị nào tm
tìm các số nguyên tố p sao cho :
p + 2 và p +4 là các số nguyên tố
Số \(p\) có 1 trong 3 dạng: \(3k;3k+1;3k+2\) với \(k\in N\)*
+, Nếu \(p=3k\Rightarrow p=3\)(vì \(p\) là số nguyên tố)
Khi đó: \(p+2=5;p+4=7\) đều là các số nguyên tố
+, Nếu \(p=3k+1\Rightarrow p+2=3k+3\) chia hết cho 3 và lớn hơn 3
Khi đó: \(p+2\) là hợp số, trái với đề bài
+, Nếu \(p=3k+2\Rightarrow p+4=3k+6\) chia hết cho 3 và lớn hơn 3
Khi đó: \(p+4\) là hợp số, trái với đề bài
Vậy với \(p=3\) thì \(p+2\) và \(p+4\) đều là các số nguyên tố.
tìm các số nguyên tố n sao cho:
a) N; n+3;n+5 đều là các số nguyên tố
b) n+2 và n+4 đều là số nguyên tố
Tìm số nguyên tố p, sao cho p + 2 và p + 4 cũng là các số nguyên tố.
Giải
Số p có một trong ba dạng : 3k, 3k + 1, 3k + 2 với k E N*
Nếu p = 3k thì p = 3 ( vì p là số nguyên tố ), khi đó p + 2 = 5, p + 4 = 7 đều là các số nguyên tố.
Nếu p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên p + 2 là hợp số, trái với đề bài.
Nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết chp 3 và lớn hơn 3 nên p + 4 là hợp số, trái với đề bài.
Vậy p = 3 là giá trị duy nhất phải tìm.
tớ khác nhé :
Cho p = 3 thì p + 2 = 5 và p + 4 = 7 đều là các số nguyên tố
Giả sử p là số nguyên tố lớn hơn 3 thì chia p có số dư là 1 ,2
Nếu : p = 3k + 1 thì p + 2 =3k + 3 chia hết cho 3
tức là p + 2 là hợp số
Nếu : p = 3k + 2 thì p + 4 = 3k + 6 chia hết cho 3
tức là p + 4 là hợp số
Vậy : p = 3 là số nguyên tố duy nhất sao cho p , p + 2 , p + 4 đồng thời là số nguyên tố
-Nếu p=2 ta có : p=2=4 (mà 4 là hợp số nên loại )
-nếu p=3 ta có : p+3=5;p+3=7 ( mà 2 số đều là nguyên tố )
Xét p > 3 \(⋮\) 3 mà p là số nguyên tố nên p > 3 \(⋮̸\)3
Có 2 trường hợp :
TH1 : p \(⋮\)3 dư 1 => p = 3k + 1 ( k \(\in\) N) =>p+2 = (3k+1 ) +2 => p+2 = 3k + 3 \(⋮\)3 mà p là số nguyên tố
=> p + 2 > 3 => p + 2 là hợp số
TH2: p\(⋮\)3 dư 2 => p = 3k + 2 (k \(\in\) N)=> p + 4 = (3k+2)+4=> p+4=3k+6 \(⋮\)3 mà p là số nguyên tố
=> p+4>3=> p+2 là hợp số
Vậy p = 3
Tìm số nguyên tố p sao cho p+2 và p+4 cũng là các số nguyên tố
xét p=2
p=2=4
p+4=6
=> không thoả mãn
xét p=3
p+2=5
p+4=7
=> thoả mãn
xét p>3
ta xét p=3k+1
p+2= 3k+3= 3(k+1) chia hết cho 3 => không thoả mãn
ta xét p=3k+2
p+4 = 3k+6 =3(k+2) chia hết cho 3 => không thoả mãn
vậy p=3 thì thoả mãn