Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
👁💧👄💧👁
26 tháng 2 2021 lúc 17:13

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

👁💧👄💧👁
26 tháng 2 2021 lúc 17:19

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

👁💧👄💧👁
26 tháng 2 2021 lúc 17:30

Bài 3:

a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố

p + 8 = 2 + 8 = 10 không là số nguyên tố

Vậy p = 2 không thỏa mãn

 Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố

p + 8 = 3 + 8 = 11 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2

Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố

p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p > 3 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất

Nguyễn Bảo Minh
Xem chi tiết
HT.Phong (9A5)
28 tháng 10 2023 lúc 9:41

Bài 18:

Ta có:

\(2015^{2015}-2015^{2014}=2015^{2014}\cdot\left(2015-1\right)=2015^{2014}\cdot2014\)

\(2015^{2016}-2015^{2015}=2015^{2015}\cdot\left(2015-1\right)=2015^{2015}\cdot2014\)

Mà: \(2014< 2015\)

\(\Rightarrow2015^{2014}< 2015^{2015}\)

\(\Rightarrow2015^{2014}\cdot2014< 2015^{2015}\cdot2014\)

\(\Rightarrow2015^{2015}-2015^{2014}< 2015^{2016}-2015^{2015}\)

Vậy: ... 

14	Nguyễn Minh	Hùng
28 tháng 10 2023 lúc 9:47

6 : (x-2)

KK YK
Xem chi tiết
Nguyễn Thị Khánh Huyền
29 tháng 10 2015 lúc 17:43

Nếu p = 2 thì p + 2 = 4 và p + 4 = 6 đều không phải là số nguyên tố.
Nếu p  3 thì số nguyên tố p có 1 trong 3 dạng: 3k, 3k + 1, 3k + 2 với k N*.
+) Nếu p = 3k  p = 3  p + 2 = 5 và p + 4 = 7 đều là các số nguyên tố.
+) Nếu p = 3k +1 thì p + 2 =3k+3-3

Nguyễn Thị Hà Chi
20 tháng 2 2016 lúc 17:46

2. Giả sử b = 2

=> b + 2 = 2 + 2 = 4 ( không thoả mãn)

    b = 3

=> b + 2 = 3 + 2 = 5, b + 4 = 3 + 4 = 7 ( thoả mãn)

=> b bằng 3 là một giá trị cần tìm

Xét b > 3 : Suy ra b có hai dạng 3k + 1 và 3k +2.

Với b có dạng 3k +1 => b + 2 = 3k +1 +2 = 3k + 3 chia hết cho 3 mà b là số nguyên tố lớn hơn 3 => không thoả mãn

Với b có dạng 3k + 2 => b + 4 = 3k +2 + 4 = 3k + 6 mà b là số nguyên tố lớn hơn 3 => không thoả mãn

      Chứng tỏ mọi b lớn 3 đều không thoả mãn. Vậy b bằng 3 là giá trị cần tìm

hgygg
27 tháng 3 2016 lúc 9:51

2.  Nếu b = 2   thì b+2=4;b+4=6     (hợp số)

 Nếu b = 3 thì  b+2=5;b+4=7          (nguyên tố)

Nếu b>3 thì có dạng là 3k+1 hoặc là 3k+2

Nếu b=3k+1             thì  b+2=3k+3             (hợp số)

Nếu b=3k+2             thì  b+4= 3k+6            (hợp số)

Vậy b=3

nguyễn Như Quỳnh
Xem chi tiết
đinh tuấn khang
Xem chi tiết
Ngô Chi Lan
30 tháng 12 2020 lúc 18:04

Với p = 2 thì p + 2 = 2 + 2 = 4 là hợp số (Loại)

Với p = 3 thì p + 2 = 3 + 2 = 5, p + 4 = 3 + 4 = 7 là các số nguyên tố (Thỏa mãn).

Với p > 3: p là số nguyên tố nên suy ra: p = 3k + 1 hoặc p = 3k + 2 (k ∈ N*).

+) p = 3k + 1: Ta có: p + 2 = 3k + 1 + 2 = 3k + 3 = 3.(k + 1) ⋮ 3 là hợp số (Loại)

+) p = 3k + 2: Ta có: p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) ⋮ 3 là hợp số (Loại).

Với p > 3 không có giá trị nào tm

Khách vãng lai đã xóa
Nguyễn Việt hà
Xem chi tiết
so lovely
15 tháng 11 2016 lúc 21:09

=> p=1

Cần 1 cái tên
15 tháng 11 2016 lúc 21:15

=> p = 3

Lê Hiển Vinh
15 tháng 11 2016 lúc 21:15

Số \(p\) có 1 trong 3 dạng: \(3k;3k+1;3k+2\) với \(k\in N\)*

+, Nếu \(p=3k\Rightarrow p=3\)(vì \(p\) là số nguyên tố)

Khi đó: \(p+2=5;p+4=7\) đều là các số nguyên tố

+, Nếu \(p=3k+1\Rightarrow p+2=3k+3\) chia hết cho 3 và lớn hơn 3

Khi đó: \(p+2\) là hợp số, trái với đề bài

+, Nếu \(p=3k+2\Rightarrow p+4=3k+6\) chia hết cho 3 và lớn hơn 3

Khi đó: \(p+4\) là hợp số, trái với đề bài

   Vậy với \(p=3\) thì \(p+2\) và \(p+4\) đều là các số nguyên tố.

nguyenvanhoang
Xem chi tiết
nguyenvanhoang
10 tháng 11 2014 lúc 6:31

làm lời giải ra cho mình

Thiên Sư
Xem chi tiết
Châu Lê Thị Huỳnh Như
18 tháng 7 2016 lúc 21:22

                                          Giải

Số p có một trong ba dạng : 3k, 3k + 1, 3k + 2 với k E N*

Nếu p = 3k thì p = 3 ( vì p là số nguyên tố ), khi đó p + 2 = 5, p + 4 = 7 đều là các số nguyên tố.

Nếu p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên p + 2 là hợp số, trái với đề bài.

Nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết chp 3 và lớn hơn 3 nên p + 4 là hợp số, trái với đề bài.

Vậy p = 3 là giá trị duy nhất phải tìm.

Thần Đồng Toán
19 tháng 7 2016 lúc 8:43

tớ khác nhé :

Cho p = 3 thì p + 2 = 5 và p + 4 = 7 đều là các số nguyên tố

Giả sử p là số nguyên tố lớn hơn 3 thì chia p có số dư là 1 ,2 

Nếu : p = 3k + 1 thì p + 2 =3k + 3  chia hết cho 3

tức là p + 2 là hợp số 

Nếu : p = 3k + 2 thì p + 4 = 3k + 6 chia hết cho 3

tức là p + 4 là hợp số 

Vậy : p = 3 là số nguyên tố duy nhất sao cho p , p + 2 , p + 4 đồng thời là số nguyên tố 

Dương
16 tháng 11 2016 lúc 21:18

-Nếu p=2 ta có : p=2=4 (mà 4 là hợp số nên loại )

-nếu p=3 ta có : p+3=5;p+3=7 ( mà 2 số đều là nguyên tố )

Xét p > 3 \(⋮\) 3 mà p là số nguyên tố nên p > 3 \(⋮̸\)3

Có 2 trường hợp :

TH1 : p \(⋮\)3 dư 1 => p = 3k + 1 ( k \(\in\) N) =>p+2 = (3k+1 ) +2 => p+2 = 3k + 3 \(⋮\)3 mà p là số nguyên tố

=> p + 2 > 3 => p + 2 là hợp số

TH2: p\(⋮\)3 dư 2 => p = 3k + 2 (k \(\in\) N)=> p + 4 = (3k+2)+4=> p+4=3k+6 \(⋮\)3 mà p là số nguyên tố

=> p+4>3=> p+2 là hợp số

Vậy p = 3

 

Feliks Zemdegs
Xem chi tiết
ngô thị loan
10 tháng 6 2015 lúc 14:56

xét p=2 

p=2=4

p+4=6

=> không thoả mãn

xét p=3

p+2=5

p+4=7

=> thoả mãn

xét p>3

ta xét p=3k+1

p+2= 3k+3= 3(k+1) chia hết cho 3 => không thoả mãn

ta xét p=3k+2

p+4 = 3k+6 =3(k+2) chia hết cho 3 => không thoả mãn

vậy p=3 thì thoả mãn