Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Thương
Xem chi tiết
Dora
9 tháng 2 2023 lúc 15:47

`@` Thay `m=3` vào ptr có: `x^2-3x+3-1=0<=>x^2-3x+2=0`

      Ptr có: `a+b+c=1-3+2=0=>x_1 =1;x_2=-2`

`@` Ptr có: `\Delta=(-m)^2-4m+4=m^2-4m+4=(m-2)^2 >= 0` (Luôn đúng `AA m`)

   `=> AA m` ptr luôn có nghiệm.

______________________________

    `x^2-2mx+m=7<=>x^2-2mx+m-7=0`

Ptr có: `\Delta'=(-m)^2-m+7=m^2-m+7=(m-1/2)^2+27/4 > 0 AA m`

  `=>` Ptr có `2` nghiệm pb `AA m`

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 8 2017 lúc 4:44

a) Δ' = m 2  - (-4m - 4) =  m 2 + 4m + 4 = m + 2 2  ≥ 0 ∀m

Vậy phương trình đã cho luôn có nghiệm với mọi m

nguyễn văn quốc
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 1 2023 lúc 13:51

a: \(\text{Δ }=\left(-2m\right)^2-4\left(2m-5\right)=4m^2-8m+20\)

\(=4m^2-8m+4+16=\left(2m-2\right)^2+16>0\)

=>(1) luôn có hai nghiệm phân biệt

b: (x1-x2)^2=32

=>(x1+x2)^2-4x1x2=32

=>\(\left(2m\right)^2-4\left(2m-5\right)=32\)

=>4m^2-8m+20-32=0

=>4m^2-8m-12=0

=>m^2-2m-3=0

=>m=3 hoặc m=-1

Leon Lowe
Xem chi tiết
Akai Haruma
1 tháng 4 2021 lúc 1:47

PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?

PT cuối cũng bị lỗi.

Bạn xem lại đề!

Akai Haruma
1 tháng 4 2021 lúc 19:27

Lời giải:

a) 

Ta có: $\Delta'=m^2-(2m-2)=m^2-2m+2=(m-1)^2+1>0$ với mọi $m\in\mathbb{R}$

Do đó pt luôn có 2 nghiệm phân biệt $x_1,x_2$ với mọi $m\in\mathbb{R}$

b) 

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-2m\\ x_1x_2=2m-2\end{matrix}\right.\)

Để $x_1^2+x_2^2-3x_1x_2=4$

$\Leftrightarrow (x_1+x_2)^2-5x_1x_2=4$

$\Leftrightarrow (-2m)^2-5(2m-2)=4$

$\Leftrightarrow 4m^2-10m+6=0$

$\Leftrightarrow 2m^2-5m+3=0$

$\Leftrightarrow (m-1)(2m-3)=0$

$\Rightarrow m=1$ hoặc $m=\frac{3}{2}$ (đều thỏa mãn)

 

Xxyukitsune _the_moonwol...
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 3 2022 lúc 21:49

a: Thay x=-3 vào pt, ta được:

9+6m+2m+1=0

=>8m+10=0

hay m=-5/4

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m+1\right)\)

\(=4m^2-8m-4\)

\(=4\left(m-2\right)\left(m+1\right)\)

Để phương trình có hai nghiệm thì (m-2)(m+1)>=0

=>m>=2 hoặc m<=-1

c: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2=16\)

\(\Leftrightarrow\left(2m\right)^2=16\)

=>2m=4 hoặc 2m=-4

=>m=2(nhận) hoặc m=-2(nhận)

Tòng Thị Như Quỳnh
Xem chi tiết
Yuya
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 6 2023 lúc 13:28

a: Δ=(-2m)^2-4(2m-3)

=4m^2-8m+12

=4m^2-8m+4+8=(2m-2)^2+8>0 với mọi m

=>PT luôn có hai nghiệm pb

b: PT có hai nghiệm trái dấu

=>2m-3<0

=>m<3/2

ʚ๖ۣۜDươηɠ_๖ۣۜPɦσηɠɞ
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 4 2021 lúc 22:52

a) Ta có: \(\text{Δ}=\left(2m\right)^2-4\cdot1\cdot\left(-3m-2\right)=4m^2+12m+8=4m^2+12m+9-1=\left(2m+3\right)^2-1\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow\left(2m+3\right)^2>1\)

\(\Leftrightarrow\left[{}\begin{matrix}2m+3>1\\2m+3< -1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m>-2\\2m< -4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1\cdot x_2=-3m-2\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\2x_1-3x_2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=-4m\\2x_1-3x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x_2=-4m-1\\x_1+x_2=-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-4m-1}{5}\\x_1=-2m+\dfrac{4m+1}{5}=\dfrac{-6m+1}{5}\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=-3m-2\)

\(\Leftrightarrow\dfrac{-4m-1}{5}\cdot\dfrac{-6m+1}{5}=-3m-2\)

\(\Leftrightarrow\left(-4m-1\right)\left(-6m+1\right)=25\left(-3m-2\right)\)

\(\Leftrightarrow24m^2-4m+6m-1=-75m+50\)

\(\Leftrightarrow24m^2+2m-1+75m-50=0\)

\(\Leftrightarrow24m^2+77m-51=0\)

Đến đây bạn tự làm nhé

Giáp Văn Chiêu
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 3 2022 lúc 21:14

\(\Delta'=\left(m-5\right)^2+2m-9=m^2-8m+16=\left(m-4\right)^2\ge0;\forall m\)

Pt đã cho luôn luôn có nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-5\right)\\x_1x_2=-2m+9\end{matrix}\right.\)

Do \(x_1\) là nghiệm của pt nên:

\(x_1^2-2\left(m-5\right)x_1-2m+9=0\Rightarrow x_1^2=2\left(m-5\right)x_1+2m-9\)

Thay vào bài toán:

\(2\left(m-5\right)x_1+2m-9+2\left(m-5\right)x_2=4m^2\)

\(\Leftrightarrow2\left(m-5\right)\left(x_1+x_2\right)+2m-9=4m^2\)

\(\Leftrightarrow2\left(m-5\right).2\left(m-5\right)+2m-9=4m^2\)

\(\Leftrightarrow-38m+91=0\)

\(\Rightarrow m=\dfrac{91}{38}\)

nguyễn văn quốc
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 1 2023 lúc 13:50

a: a=1; b=2m; c=-1

Vì a*c<0 nên (2) luôn có hai nghiệm phân biệt

b: \(x_1^2+x_2^2-x_1x_2=7\)

=>\(\left(x_1+x_2\right)^2-3x_1x_2=7\)

=>\(\left(-2m\right)^2-3\cdot\left(-1\right)=7\)

=>4m^2=7-3=4

=>m^2=1

=>m=1 hoặc m=-1