1.Chứng tỏ rằng:
Tổng của 4 số tự nhiên lẻ liên tiếp chia hết cho 4
Chứng tỏ rằng:Tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
Gọi bốn số tự nhiên liên tiếp lần lượt là a;a+1;a+2;a+3
Ta có: a+a+1+a+2+a+3
=4a+6
mà \(4a⋮4\)
và \(6⋮̸4\)
nên \(4a+6⋮̸4\)
Vậy: Tổng của bốn số tự nhiên liên tiếp không chia hết cho 4
Chứng tỏ rằng:
Tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
Gọi 4 số liên tiếp là a;a+1;a+2;a+3
S=a+a+1+a+2+a+3=4a+10=4(a+2)+2 ko chia hết cho 4
Gọi 4 số liên tiếp là a
a+1 a+2 a+3
S=a+a+1+a+2+a+3=4a+10=4(a+2)+2 ko chia hết cho 4
a)tổng của 3 số tự nhiên liên tiếp có chia hết cho 3 không
b)tổng của 4 số tự nhiên liên tiếp có chia hết cho 4 không
c)chứng tỏ rằng trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
d)chứng tỏ rằng trong 4 số tự nhiên liên tiếp có 1 số chia hết cho 4
a)
gọi 3 STN liên tiếp là a ;a+1;a+2
=>a+a+1+a+2=a+a+a+1+2=3a+3=3(a+1) chia hết cho 3
=> .. có
b)
gọi 4 STN liên tiếp là a;a+1;a+2;a+3
=>a+a+1+a+2+a+3=a+a+a+a+6=4a+6
=> ko chia hết cho 4
Chứng tỏ rằng:Tổng hai số chẵn liên tiếp ko chia hết cho 4
Gọi 2 số đó là a và a+ 2
Ta có: a + a + 2 = a x 2 + 2
= (a+1) x 2
Mà a chẵn =>a + 1 lẻ
=> (a+1) x 2 không chia hết cho 4
Chứng tỏ rằnga) Tổng của 2 số lẻ liên tiếp thì chia hết cho 4.b) Tích của 2 số tự nhiên liên tiếp thì chia hết cho 2.c) Tích của 3 số tự nhiên liên tiếp thì chia hết cho 6.d) Tích của 4 số tự nhiên liên tiếp thì chia hết cho 24.e) Tích của 5 số tự nhiên liên tiếp thì chia hết cho 120.
ousbdl
jvdajnvjl
nsdg
ouhqer
kgkrebvjdsjb
vq
wjkgb
Fbovafbeuonasf
Chứng minh rằng:
tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3
Gọi 3 số đó là:
\(a,a+1,a+2\)
Tổng của 3 số tự nhiên đó là:
\(a+\left(a+1\right)+\left(a+2\right)\)
\(=a+a+1+a+2\)
\(=3a+3\)
\(=3\left(a+1\right)\)
Luôn chia hết cho 3 nên tổng 3 số tự nhiên liên tiếp sẽ chia hết cho 3
Gọi ba số liên tiếp là a;a+1;a+2
\(a+a+1+a+2=3a+3=3\left(a+1\right)⋮3\)
=>Tổng của ba số tự nhiên liên tiếp thì chia hết cho 3
Tổng của 3 số tự nhiên liên tiếp có chia hết cho 3 kô?
Tổng của 4 số tự nhiên liên tiếp có chia hết cho 4 kô?
Chứng tỏ ràng trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3.
Chứng tỏ ràng trong 4 số tự nhiên liên tiếp có 1 số chia hết cho 4.
Bài 3. Tìm các chữ số sao cho số 7a4b chia hết cho 4 và chia hết cho 7
Bài 2. Tìm số tự nhiên n để 3n +
Bài 4. Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Bài 5. Chứng tỏ rằng tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
Bài 3:
\(\overline{7a4b}\) ⋮ 4 ⇒ \(\overline{4b}\)⋮ 4 ⇒ b = 0; 4; 8
Nếu b = 0 ta có: \(\overline{7a40}\)⋮ 7
⇒ 7040 + a \(\times\) 100 ⋮ 7
1005\(\times\) 7+ 5 + 14a + 2a ⋮ 7
5 + 2a ⋮ 7 ⇒ 2a = 2; 9; 16⇒ a = 1; \(\dfrac{9}{3}\);8 (1)
Nếu b = 8 ta có: \(\overline{7a4b}\) = \(\overline{7a48}\)⋮ 7
⇒ 7048 + a\(\times\) 100 ⋮ 7
1006\(\times\) 7 + 6 + 14a + 2a ⋮ 7
6 + 2a ⋮ 7 ⇒ 2a = 1; 8; 15 ⇒ a = \(\dfrac{1}{2}\); 4; \(\dfrac{15}{2}\) (2)
Nếu b = 4 ta có: \(\overline{7a4b}\) = \(\overline{7a44}\) ⋮ 7
⇒ 7044 + 100a ⋮ 7
1006.7 + 2 + 14a + 2a ⋮ 7
2 + 2a ⋮ 7 ⇒ 2a = 5; 12;19 ⇒ a = \(\dfrac{5}{2}\); 6; \(\dfrac{9}{2}\) (3)
Kết hợp (1); (2); (3) ta có:
(a;b) = (1;0); (8;0); (4;8); (6;4)
a) Tổng của ba số tự nhiên liên tiếp có chia hết cho 3 không ?
b) Tổng của bốn số tự nhiên liên tiếp có chia hết cho 4 không ?
c) Chứng tỏ rằng trong ba số tự nhiên liên tiếp có một số chia hết cho 3
d) Chứng tỏ rằng trong bốn số tự nhiên liên tiếp có một số chia hết cho 4
A, CÓ
B,KHÔNG
C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,
(a+a+a)+ (1+2)
3a+3 chia hết cho 3
vi 3chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3
(a+a+a+a)+(1+2+3)
4a+6 không chia hết cho 3 vì 4 không chia hết cho 3
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3
nếu câu a và câu b có vì sao thì sẽ làm thế nào
Đáp án của mik là:..............
Nhớ k cho mik nha!