Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Bích Tuyền
Xem chi tiết
Bỉ Ngạn Hoa
Xem chi tiết
Emma Granger
17 tháng 1 2019 lúc 21:05

bài 1 : AH = \(\sqrt{119}\)cm
bài 2 : BN = \(\sqrt{49.54}\)cm

NGUYỄN THÚY AN
17 tháng 1 2019 lúc 21:11

* hình tự vẽ

1/

Xét tam giác ABC: tam giác ABC là tam giác cân(gt) mà AH là đường cao(vì AH\(\perp\)BC)=> AH cũng là đường trung tuyến=> BH=HC

Ta có: BC=HB+HC, mà HB=HC(cmt)=> HB=HC=\(\frac{BC}{2}\)=> HB=HC= 5cm

Xét tam giác ACH, theo định lý Py ta go, có:

AH^2+ HC^2=AC^2

=> AH^2+ 5^2= 12^2

=> AH^2= 144-25

=> AH^2= 119=> AH= căn 119cm

2/ Xét tam giác BCA, theo định lý Py ta go, có:

BA^2+ AC^2= BC^2=> 12^2+5^2=BC^2

=> 144+25= BC^2=> BC^2= 169=>BC=13cm

Mà M là trung điểm BC(gt)=> MB=MC nên ta có BC=MB+MC=> MB=MC=\(\frac{BC}{2}\)=> MB=MC=6,5

Xét tam giác BMN, theo định lý Py ta go, có:

BN^2+NM^2= BM^2

=> BN^2+2,7^2=6,5^2=> BN^2 = 42,25-7,29=> BM^2= 34,96=> BM= căn 34,96cm

Emma Granger
17 tháng 1 2019 lúc 21:13

Bài 1 : 
Xét \(\Delta ABC\)cân tại A \(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
Xét \(\Delta ABH\)và \(\Delta AHC\)có:
AB = AC (cmt)
\(\widehat{B}=\widehat{C}\)(cmt)
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(Ch-gn\right)\)
\(\Rightarrow BH=HC\)( 2 cạnh tương ứng)
Mà BH + HC = BC
=> BH = HC = 1/2.BC = 5cm
Xét \(\Delta AHC\)
Áp dụng định lý Pytago có : AC= HC2 + AH2 
=> 122=52+ AH2 => 144 = 25 + AH2 => AH2 = 144 - 25 = 119 => AH = \(\sqrt{119}\)(cm)
Vậy AH dài \(\sqrt{119}\)cm

Huynh Tan Phat
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2021 lúc 20:00

Bài 1: 

BC=2PQ

\(\Leftrightarrow2x+4=4x-4\)

\(\Leftrightarrow x=3\)

nguyễn thị thu trang
Xem chi tiết
Trần Khánh Huyền 2016
19 tháng 6 2017 lúc 22:53

ko pc s thức kuya z

Nguyễn Hải Băng
Xem chi tiết
Phương An
19 tháng 11 2016 lúc 17:01

1.

Xét tam giác AMB và tam giác NMC có:

AM = NM (gt)

AMB = NMC (2 góc đối đỉnh)

MB = MC (M là trung điểm của BC)

=> Tam giác AMB = Tam giác NMC (c.g.c)

Xét tam giác AMC và tam giác NMB có:

AM = NM (gt)

AMC = NMB (2 góc đối đỉnh)

MC = MB (M là trung điểm của BC)

=> Tam giác AMC = Tam giác NMB (c.g.c)

2.

Xét tam giác AME và tam giác BMC có:

AM = BM (M là trung điểm của AB)

AME = BMC (2 góc đối đỉnh)

ME = MC (gt)

=> Tam giác AME = Tam giác BMC (c.g.c)

=> AEM = BCM (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AE // BC

Xét tam giác ANF và tam giác CNB có:

AN = CN (N là trung điểm của AC)

ANF = CNB (2 góc đối đỉnh)

NF = NB (gt)

=> Tam giác ANF = Tam giác CNB (c.g.c)

=> AF = CB (2 cạnh tương ứng)

thư trần
Xem chi tiết
Đỗ Hằng Anh
Xem chi tiết
Akai Haruma
22 tháng 2 2021 lúc 17:24

Lời giải:

Tam giác $ABC$ cân tại $A$ nên:

$\widehat{ABC}=\frac{180^0-\widehat{A}}{2}$

$M,N$ là trung điểm của $AB,AC$ mà $AB=AC$ nên $AM=AN$

$\Rightarrow \triangle AMN$ cân tại $A$

$\Rightarrow \widehat{AMN}=\frac{180^0-\widehat{A}}{2}$

Do đó: $\widehat{ABC}=\widehat{AMN}$

$\Rightarrow MN\parallel BC$

Trên tia đối của tia $NM$ lấy $P$ sao cho $NM=NP$

Dễ chứng minh $\triangle AMN=\triangle CPN$ (c.g.c)

$\Rightarrow \widehat{AMN}=\widehat{CPN}$ $\Rightarrow AM\parallel CP$

$\Rightarrow BM\parallel CP$

$\Rightarrow \widehat{BMC}=\widehat{PCM}$ (so le trong)

Xét tam giác $BMC$ và $PCM$ có:

$MC$ chung

$\widehat{BMC}=\widehat{PCM}$ (cmt)

$\widehat{BCM}=\widehat{PMC}$ (so le trong)

$\Rightarrow \triangle BMC=\triangle PCM$ (g.c.g)

$\Rightarrow BC=PM=2MN\Rightarrow MN=\frac{BC}{2}$

 

Akai Haruma
22 tháng 2 2021 lúc 17:26

Hình vẽ:

undefined

Nguyễn Lê Phước Thịnh
22 tháng 2 2021 lúc 22:25

Xét ΔABC có 

M là trung điểm của AB(gt)

N là trung điểm của AC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: MN//BC và \(MN=\dfrac{1}{2}\cdot BC\)(Định lí 2 về đường trung bình của tam giác)

my nguyễn
Xem chi tiết
Sam Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 9 2021 lúc 21:25

1: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay AC=16(cm)

Xét ΔABC có

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)

2: Xét tứ giác AMNC có MN//AC

nên AMNC là hình thang

mà \(\widehat{A}=90^0\)

nên AMNC là hình thang vuông