chứng minh răng x^8-x^7+x^2-x+1>0
chứng minh răng biểu thức p= x^8-x^5+x^2-x+1 nhận giá trị dương với mọi x
x^8>=0; x^8-x^5>=0;
x^2>=0; x^2-x>=0;
x^8-x^5+X^2-X+1>=1;
Chứng minh răng : x + 1/x > 2 với mọi giá trị của x>0
Chứng minh rằng \(x^8-x^7+x^2-x+1>0,\forall x\).
x^8 - x^7 + x^2 - x + 1
= x^7(x-1) + x(x-1) +1
= (x-1)(x^7 + x) + 1
= (x^2-x)(x^6+1) + 1
Ta có: x^2 - x lớn hơn hoặc = 0; x^6 + 1 >0
=> (x^2-x)(x^6+1) lơn hơn hoặc bằng 0
=> (x^2+1)(x^6+1) + 1 > 0
=> x^8 - x^7 + x^2 - x + 1 > 0 (đpcm)
chứng minh x^8 - x^7 + x^5 - x^3 +1 >0
Chứng minh với mọi x
\(x^8-x^7+x^6+x^5-x^4+x^3+x^2-x+1>0\)
\(x^8-x^7+x^6+x^5-x^4+x^3+x^2-x+1\)
\(=x^6\left(x^2-x+1\right)+x^3\left(x^2-x+1\right)+x^2-x+1\)
\(=\left(x^6+x^3+1\right)\left(x^2-x+1\right)\)
\(=\left[\left(x^3+\frac{1}{2}\right)^2+\frac{3}{4}\right]\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]>0\) \(\forall x\)
Cho biểu thức P= \(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\left(\frac{1-x}{\sqrt{2}}\right)^2\) ( với x>= 0; x khac 1 )
a> Rút gọn P
b> Chứng minh răng; nếu 0<x<1 thì P>0
Bài 4: Cho biểu thức: D =\(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
a) Rút gọn biểu thức D.
b) Chứng minh răng: 0 <D< 2
ĐKXĐ:\(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
a) \(D=\left[\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right]:\frac{\sqrt{x}-1}{2}\)
\(=\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\frac{\sqrt{x}-1}{2}=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}=\frac{2}{x+\sqrt{x}+1}\)
b) Ta có: \(x+\sqrt{x}+1>1\)
Suy ra \(D=\frac{2}{x+\sqrt{x}+1}< 2\)
\(\Rightarrow0< D< 2\)
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2 =0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| < |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)
2 = 0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2