Phân tích đa thức sau thành nhân tử: x2 + 6x + 9
Phân tích đa thức sau thành nhân tử x 2 + 6 x + 9
Ta có: x 2 + 6 x + 9 = x 2 + 2 . x . 3 + 3 2 = ( x + 3 ) 2 .
Phân tích đa thức sau thành nhân tử x 2 + 6 x + 9 .
Ta có: x 2 + 6 x + 9 = x 2 + 2 . x . 3 + 3 2 = ( x + 3 ) 2 .
Phân tích đa thức sau thành nhân tử A) 12x³-9x2+3x B) x2-y²+6x+9
a ) x=0; x = -(căn bậc hai(7)*i-3)/8;x = (căn bậc hai(7)*i+3)/8;
b ) -(y-x-3)*(y+x+3)
a) \(12x^3-9x^2+3x\)
\(=3x\left(4x^2-3x+1\right)\)
b) \(x^2-y^2+6x+9\)
\(=\left(x^2+6x+9\right)-y^2\)
\(=\left(x+3\right)^2-y^2\)
\(=\left(x+y+3\right)\left(x-y+3\right)\)
Phân tích các đa thức sau thành nhân tử:
a) x 2 + 6x + 8; b) 2 x 2 + 14x +12;
c) 9 x 2 + 24x +15; d) 6 x 2 -xy-7 y 2 .
a) (x + 2)(x + 4). b) 2(x + 6)(x + l).
c) 3(3x + 5)(x + l). d) (6x -7y)(x + y).
Phân tích đa thức x 2 – 6 x + 9 – y 2 thành nhân tử, kết quả là:
A. ( x + 3 ) ( x – 3 ) ( x – y )
B. ( x – 3 + y ) ( x – 3 – y )
C. ( x + y + 3 ) ( x + y – 3 )
D. ( x + y ) ( x – y ) ( x – 3 )
Phân tích đa thức thành nhân tử: a)4x2 +4x+1. b)x2+6x-y2+9
a) $4x^2+4x+1$
$=(2x)^2+2\cdot2x\cdot1+1^2$
$=(2x+1)^2$
b) $x^2+6x-y^2+9$
$=(x^2+6x+9)-y^2$
$=(x^2+2\cdot x\cdot3+3^2)-y^2$
$=(x+3)^2-y^2$
$=(x+3-y)(x+3+y)$
$\text{#}Toru$
a: \(4x^2+4x+1\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2\)
\(=\left(2x+1\right)^2\)
b: \(x^2+6x-y^2+9\)
\(=\left(x^2+6x+9\right)-y^2\)
\(=\left(x+3\right)^2-y^2\)
\(=\left(x+3+y\right)\left(x+3-y\right)\)
phân tích các đa thức sau thành nhân tử:
a, A= x2 - 6x + 9 - 9y2
b, B= x3 - 3x2 + 3x - 1 + 2(x2 - 1)
a) \(A=x^2-6x+9-9y^2\)
\(=\left(x-3\right)^2-\left(3y\right)^2\)
\(=\left(x-3-3y\right)\left(x-3+3y\right)\)
b) \(B=x^3-3x^2+3x-1+2\left(x^2-1\right)\)
\(=\left(x-1\right)^3+\left(2x+2\right)\left(x-1\right)\)
\(=\left(x-1\right)\left[\left(x-1\right)^2+2x+2\right]\)
\(=\left(x-1\right).\left(x^2+3\right)\)
a, \(A=\left(x-3\right)^2-9y^2=\left(x-3-3y\right)\left(x-3+3y\right)\)
b, \(B=\left(x-1\right)^3+2\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left[\left(x-1\right)^2+2\left(x+1\right)\right]\)
\(=\left(x-1\right)\left(x^2-2x+1+2x+2\right)=\left(x-1\right)\left(x^2+3\right)\)
phân tích các đa thức sau thành nhân tử:
a, A= x2 - 6x + 9 - 9y2
b, B= x3 - 3x2 + 3x - 1 + 2(x2 - 1)
Phân tích các đa thức sau thành nhân tử:
a) 4 x 2 +4xy + y 2 ; b) ( 2 x + 1 ) 2 - ( x - 1 ) 2 ;
c) 9 - 6x + x 2 - y 2 ; d) -(x + 2) + 3( x 2 -4).
a) Áp dụng HĐT 1 thu được ( 2 x + y ) 2 .
b) Áp dụng HĐT 3 với A = 2x + l; B = x - l thu được
[(2x +1) + (x -1)] [(2x +1) - (x -1)] rút gọn thành 3x(x + 2).
c) Ta có: 9 - 6x + x 2 - y 2 = ( 3 - x ) 2 - y 2 = (3 - x - y)(3 -x + y).
d) Ta có: -(x + 2) + 3( x 2 - 4) = -{x + 2) + 3(x + 2)(x - 2)
= (x + 2) [-1 + 3(x - 2)] = (x + 2)(3x - 7).
Phân tích đa thức thành nhân tử (bằng phương pháp nhóm hạng tử)
c/ 5x2 + 3y + 15x + xy d/ x2 + 6x + 9 – y2
e/ x2 – y2 + 2x + 1 f/ x2 – 2xy – 9 + y2
c) \(5x^2+3y+15x+xy=5x\left(x+3\right)+y\left(x+3\right)=\left(x+3\right)\left(5x+y\right)\)
d) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x+3-y\right)\left(x+3+y\right)\)
e) \(x^2-y^2+2x+1=\left(x^2+2x+1\right)-y^2=\left(x+1\right)^2-y^2=\left(x+1-y\right)\left(x+1+y\right)\)
f) \(x^2-2xy-9+y^2=\left(x^2-2xy+y^2\right)-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)
c: \(5x^2+15x+3y+xy\)
\(=5x\left(x+3\right)+y\left(x+3\right)\)
\(=\left(x+3\right)\left(5x+y\right)\)
d: \(x^2+6x+9-y^2\)
\(=\left(x+3\right)^2-y^2\)
\(=\left(x+3-y\right)\left(x+3+y\right)\)
e: \(x^2+2x+1-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1-y\right)\left(x+1+y\right)\)
f: \(x^2-2xy+y^2-9\)
\(=\left(x-y\right)^2-9\)
\(=\left(x-y-3\right)\left(x-y+3\right)\)