Chứng minh rằng: x^4-x^3-x-1=0 chỉ có 2 nghiệm
Chứng minh rằng các phương trình sau luôn có nghiệm: a)x^5 - 3x+3=0 b)x^5+x-1=0 c)x^4+x^3-3x^2+x+1=0
Lời giải:
a) $f(x)=x^5-3x+3$ liên tục trên $R$
$f(0)=3>0; f(-2)=-23<0\Rightarrow f(0)f(-2)<0$
Do đó pt $f(x)=0$ có ít nhất 1 nghiệm thuộc $(-2;0)$
Nghĩa là pt đã cho luôn có nghiệm.
b) $f(x)=x^5+x-1$ liên tục trên $R$
$f(0)=-1<0; f(1)=1>0\Rightarrow f(0)f(1)<0$
Do đó pt $f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(0;1)$
Hay pt đã cho luôn có nghiệm.
c) $f(x)=x^4+x^3-3x^2+x+1$ liên tục trên $R$
$f(0)=1>0; f(-1)=-3<0\Rightarrow f(0)f(-1)<0$
$\Rightarrow f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(-1;0)$
Hay pt đã cho luôn có nghiệm.
Chứng minh rằng: \(m.\left(1-x\right)^3.\left(x^2-4\right)+x^4-3=0\) có ít nhất 2 nghiệm với mọi m
Đặt f(x) = m(1 - x)³.(x² - 4) + x⁴ - 3
⇒ f(x) liên tục trên R
Ta có:
f(-2) = m.(1 - 2)³.[(-2)² - 4] + (-2)⁴ - 3
= 0 + 16 - 3
= 15
f(1) = m.(1 - 1)³.(1² - 4) + 1⁴ - 3
= 0 + 1 - 3
= -2
f(2) = m.(1 - 2)³.(2² - 4) + 2⁴ - 3
= 0 + 16 - 3
= 15
Do f(-2).f(1) = 15.(-2) = -30 < 0
Và f(1).f(2) = -2.15 < 0
⇒ Phương trình đã cho có ít nhất 2 nghiệm x₁ và x₂ với mọi m, trong đó x₁ ∈ (-2; 1); x₂ ∈ (1; 2)
chứng minh rằng:
X^6+x^5+x^4+x^3+x^2+x+1=0 vô nghiệm
6. Biết rằng phương trình x 3 −3x 2 +3 = 0 có ba nghiệm phân biệt. Chứng minh rằng trong ba nghiệm này có hai nghiệm a,b thoả mãn ab+3 = a+2b.
7. Cho đa thức P(x) = 2x 4 −x 3 −5x 2 +5x−5. Gọi a,b, c là ba nghiệm phân biệt của đa thức Q(x) = x 3 −3x+1. Tính P(a).P(b).P(c).
8. Biết rằng phương trình P(x) = x 3 +3x 2 −1 có ba nghiệm phân biệt a < b < c. Chứng minh rằng c = a 2 +2a− 2,b = c 2 +2c−2,a = b 2 +2b−2.
chứng minh phương trình
x^3-3x+4=0 vô nghiệm
Và delta >=0 vì sao chỉ có 2 nghiệm mà không phải 3 nghiệm ( 2 no pb với 1 no kép)
phương trình này vẫn có nghiệm mà chỉ là vô tỉ thôi, không vô nghiệm được
delta hình như chỉ dùng cho pt bậc 2 mà thôi
ax^2+bx+c=0
CHo f(x)= a x mũ 3 + b x mũ 2 +cx+d
a) Chứng minh rằng nếu a+b+c+d = 0 thì f(x) có một nghiệm là x=1
b) Chứng minh rằng nếu a-b +c-d =0 thì f(x) có một nghiệm là x=-1
Áp dụng : tìm nghiệm
A(x)=-2x mũ 3 + 5 x mũ 2 - 7x +4
B(x)= 7x mũ 3 +3x mũ 2 -x +3
C(x)= x mũ 2 - x mũ 3 -x +1
D(x) = 2 x mũ 3 + x mũ 2 +2x +1
chứng minh rằng đa thức p(x)có ít nhất 2 nghiệm biết rằng:
x.P(x+2)-(x-3).P(x-1)=0
\(x.P\left(x+2\right)-\left(x-3\right).P\left(x-1\right)=0\)
\(\Leftrightarrow x.P\left(x+2\right)=\left(x-3\right).P\left(x-1\right)\)
+) x = 3 thì \(3.P\left(5\right)=0.P\left(2\right)=0\Rightarrow P\left(5\right)=0\)
+) x = 0 thì \(0.P\left(2\right)=-3.P\left(-1\right)\Rightarrow P\left(-1\right)=0\)
Vậy đa thức P(x) có ít nhất 2 nghiệm là 5 và -1
bạn Hà Quang Hưng sai rồi
Chứng minh rằng phương trình:
\(x^4-\left(3m-2\right)x^3+mx-1=0\) có ít nhất 2 nghiệm với mọi giá trị của tham số m
Chứng minh rằng phương trình:
\(x^4-\left(3m-2\right)x^3+mx-1=0\) có ít nhất 2 nghiệm với mọi giá trị của tham số m