Bài 3: Hàm số liên tục

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Big City Boy

Chứng minh rằng: \(m.\left(1-x\right)^3.\left(x^2-4\right)+x^4-3=0\) có ít nhất 2 nghiệm với mọi m

Kiều Vũ Linh
1 tháng 1 lúc 8:17

Đặt f(x) = m(1 - x)³.(x² - 4) + x⁴ - 3

⇒ f(x) liên tục trên R

Ta có:

f(-2) = m.(1 - 2)³.[(-2)² - 4] + (-2)⁴ - 3

= 0 + 16 - 3

= 15

f(1) = m.(1 - 1)³.(1² - 4) + 1⁴ - 3

= 0 + 1 - 3

= -2

f(2) = m.(1 - 2)³.(2² - 4) + 2⁴ - 3

= 0 + 16 - 3

= 15

Do f(-2).f(1) = 15.(-2) = -30 < 0

Và f(1).f(2) = -2.15 < 0

⇒ Phương trình đã cho có ít nhất 2 nghiệm x₁ và x₂ với mọi m, trong đó x₁ ∈ (-2; 1); x₂ ∈ (1; 2)


Các câu hỏi tương tự
Mai Anh
Xem chi tiết
Mai Anh
Xem chi tiết
Mai Anh
Xem chi tiết
Mai Anh
Xem chi tiết
Mai Anh
Xem chi tiết
Mai Anh
Xem chi tiết
Mai Anh
Xem chi tiết
Mai Anh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết