CHỨNG MINH RẰNG các cặp số sau nguyên tố cùng nhau :
n^4+3n^2 +1 và n^3 + 2n
Với mọi số tự nhiên n, chứng minh rằng các cặp số sau nguyên tố cùng nhau:
a) 2n + 3, n + 2
b) n + 1, 3n +4
c) 2n + 3, 3n + 4
Gọi d là ước chung lớn nhất của 2 số. Nhiệm vụ của ta là chứng minh d=1.
a) 2n+3, n+2 \(⋮d\)
\(\Rightarrow\left(2n+3\right)-\left(n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
b) n+1, 3n+4
\(\Rightarrow\left(3n+4\right)-3\left(n+1\right)⋮d\)
\(\Rightarrow1⋮d\)
c) 2n+3, 3n+4
\(\Rightarrow3\left(2n+3\right)-2\left(3n+4\right)⋮d\)
\(\Rightarrow1⋮d\)
𝓪, 𝓖𝓸̣𝓲 𝓤̛𝓒𝓛𝓝\(\left(2n+3,n+2\right)=d\)
\(\Rightarrow2n+3⋮d\)
\(\Rightarrow n+2⋮d\Rightarrow2.\left(n+2\right)⋮d\Rightarrow2n+4⋮d\)
\(\Rightarrow2n+4-2n+3⋮d\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\)𝓤̛𝓒𝓛𝓝\(\left(2n+3,n +2\right)=1\)
𝓥𝓪̣̂𝔂 \(2n+3,n+2\) 𝓵𝓪̀ 𝓱𝓪𝓲 𝓼𝓸̂́ 𝓷𝓰𝓾𝔂𝓮̂𝓷 𝓽𝓸̂́ 𝓬𝓾̀𝓷𝓰 𝓷𝓱𝓪𝓾
𝓫, 𝓖𝓸̣𝓲 𝓤̛𝓒𝓛𝓝\(\left(n+1,3n+4\right)=d\)
\(\Rightarrow3n+4⋮d\)
\(\Rightarrow n+1⋮d\Rightarrow3\left(n+1\right)⋮d\Rightarrow3n+3⋮d\)
\(\Rightarrow3n+4-\left(3n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\)𝓤̛𝓒𝓛𝓝\(\left(n+1,3n+4\right)=1\)
𝓥𝓪̣̂𝔂 \(n+1,3n+4\) 𝓵𝓪̀ 𝓱𝓪𝓲 𝓼𝓸̂́ 𝓷𝓰𝓾𝔂𝓮̂𝓷 𝓽𝓸̂́ 𝓬𝓾̀𝓷𝓰 𝓷𝓱𝓪𝓾
𝓑𝓪̣𝓷 𝓸̛𝓲, 𝓬𝓱𝓸 𝓶𝓲̀𝓷𝓱 𝓼𝓾̛̉𝓪 𝓵𝓪̣𝓲 𝓸̛̉ 𝓬𝓪̂𝓾 𝓪 𝓷𝓱𝓪, 𝓬𝓱𝓸̂̃ 2𝓷+4-(2𝓷+3) 𝓹𝓱𝓪̉𝓲 𝓽𝓱𝓮̂𝓶 𝓷𝓰𝓸𝓪̣̆𝓬 𝓸̛̉ 2𝓷+3 𝓷𝓱𝓪!
Với n là số tự nhiên. Chứng minh các cặp số sau nguyên tố cùng nhau
a) 2n + 3 và 3n + 4
b) 3n + 4 và 4n + 5
a) Gọi d=(2n+3; 3n+4)
Ta có: 2n+3 và 3n+4 chia hết cho d
--> 6n+9 và 6n+8 chia hết cho d
--> (6n+9)-(6n+8) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2n+3 và 3n+4 nguyên tố cùng nhau
a: Gọi d là UCLN của 2n+3 và 3n+4
\(\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\Leftrightarrow d=1\)
=> UCLN(2n+3;3n+4)=1
hay 2n+3;3n+4 là hai số nguyên tố cùng nhau
a) Gọi d là UCLN (2n+3;3n+4)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+4⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\)
\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)
Vậy 2n+3 và 3n+4 là 2 số nguyên tố cùng nhau
b) Gọi d là UCLN(3n+4;4n+5)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\4n+5⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}12n+16⋮d\\12n+15⋮d\end{matrix}\right.\)
\(\Rightarrow12n+16-12n-15⋮d\Rightarrow1⋮d\)
Vậy 3n+4 và 4n+5 là 2 số nguyên tố cùng nhau
Chứng minh rằng các cặp số sau nguyên tố cùng nhau với mọi giá trị thuộc N
a) n+1 và 3n+4
b) 2n+3 và 4n+8
a) Gọi d là ƯCLN (n+1,3n+4), d thuộc N*
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+4⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3n+3⋮d\\3n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(3n+4\right)-\left(3n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+1,3n+4\right)=1\)
Vậy n+1 và 3n+4 là hai số nguyên tố cùng nhau.
b) Gọi d là ƯCLN(2n+3,4n+8), d thuộc N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow\)d bằng 1 hoặc d bằng 2
Mà 2n+3 không chia hết cho 2 \(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
Vậy 2n+3 và 4n+8 là hai số nguyên tố cùng nhau.
cHỨNG MINH RẰNG
cÁC CẶP SỐ SAU LÀ SÓ NGUYÊN TỐ CÙNG NHAU VỚI MỌI n
2n+1 VÀ 6n+5
3n+2 và 5n+3
a) Gọi \(d\inƯC\left(n+1;2n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow2n+2-2n-3⋮d\)
\(\Leftrightarrow-1⋮d\)
\(\Leftrightarrow d\inƯ\left(-1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯC\left(n+1;2n+3\right)=\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(n+1;2n+3\right)=1\)
hay n+1 và 2n+3 là cặp số nguyên tố cùng nhau(đpcm)
Chứng tỏ rằng các cặp số sau nguyên tố cùng nhau với mọi số tự nhiên n: a, 2n + 1 và 6n + 5 b, 3n + 2 và 5n + 3
a: Gọi d=ƯCLN(6n+5;2n+1)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)
=>\(2⋮d\)
mà 2n+1 là số lẻ
nên d=1
=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(3n+2;5n+3)
=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
=>\(15n+10-15n-9⋮d\)
=>\(1⋮d\)
=>d=1
=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau
Chứng minh rằng các số sau là số nguyên tố cùng nhau:
a, 2n+3 và n+1
b,2n+3 và 3n+4
de thui
nhung mk phai di hc rui
byeeeeeeeee
cac bn
nhaE@@@
hihi6Công Chúa Ori
hoc gioi!
Chứng minh rằng với mọi số tự nhiên n thuộc N* các cặp số nguyên tố cùng nhau
Câu 1: n và n+1
Câu2: 2n+2 và 2n+3
Câu 3:n và 2n+1
Câu4: 2n+1 và 3n+1
a) Gọi d là UCLN ( n ; n+1 )
n+1 chia hết cho d
n chia hết cho d
-> n+1-n chia hết cho d
-> 1chia hết cho d
=>N và n+1 là 2 số nguyên tố cùng nhau
=>ĐPCM
Chứng minh rằng: Với mọi số tự nhiên n, các số sau là các số nguyên tố cùng nhau:
a) n + l; n + 2;
b) 2n + 2; 2n + 3;
c) 2n + 1; n + l;
d) n + l; 3n + 4.
Chứng minh rằng các cặp sau đây là nguyên tố cùng nhau với mọi số tự nhiên:
1. n+6 và n+7 2. 2n+5 và 3n+7
3. 2n+5 và 4n+8 4. 5n+12 và 3n+7