Cho hình bình hành ABCD, đường thẳng đi qua D cắt AC,AB,CB theo M,N,K.
CM: DM/DN+DM/DK=1
Cho hình bình hành ABCD, 1 đường thẳng đi qua D cắt AC,AB,CB theo thứ tự ở M,N,K
Chung minh rang:a DM2=MN.MK
b, DM/DN + DM/DK = 1
Cho hình bình hành ABCD. Một đường thẳng đi qua D cắt AC,AB,BC theo thứ tự M,N,K.
a) DM^2=MN.MK
b)\(\frac{DM}{DN}+\frac{DM}{DK}=1\)
câu a
xét tam giác MDC có
NA//DC (AB//DC)
\(\Rightarrow\frac{MN}{MD}=\frac{MA}{MC}\)( hệ quả Thales) (1)
xét tam giác MKC có
DA//CK (DA//BC)
\(\Rightarrow\frac{MD}{MK}=\frac{MA}{MC}\)( hệ quả Thales) (2)
từ (1) và (2) \(\Rightarrow\frac{MD}{MK}=\frac{MN}{MD}\)
\(\Rightarrow MD^2=MN.MK\)
câu b mình chưa giải đc nhé
cho hình bình hành ABCD. một đường thẳng đi qua D cắt AC, AB, CB lần lượt tại M, N,K. Cm
a) MD2=MN.MK
b) \(\frac{1}{DN}+\frac{1}{DK}=\frac{1}{DM}\)
cho hình bình hành ABCD ,qua đỉnh D kẻ một đường thẳng cắt AC,AB,BC theo thứ tự tại M,N,K. chứng minh a, DM^2=MN*MK
b,DM/DN=DM/DK=1
Bài 1: Cho hình thang ABCD (AB//CD) có O là giao điểm của AC và BD. Gọi F là trung điểm của CD. E là giao điểm của OF và AB. Chứng minh rằng: E là trung điểm của AB
Bài 2: Cho hình bình hành ABCD, 1 đường thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. Chứng minh rằng: a) DM^2 = MN*MK b) DM/DN+DM/DK=1
1:
Xet ΔOAE và ΔOCF có
góc OAE=góc OCF
góc AOE=góc COF
=>ΔOAE đồng dạng với ΔOCF
=>AE/CF=OE/OF
Xét ΔOEB và ΔOFD có
góc OEB=góc OFD
góc EOB=góc FOD
=>ΔOEB đồng dạng với ΔOFD
=>EB/FD=OE/OF=AE/CF
mà CF=DF
nên EB=AE
=>E là trung điểm của BA
cho hình bình hành ABCD , đường thẳng đi qua D cắt AC,AB,CB theo thú tự ở M,N,K ,Chứng minh rằng
a, DM2=MN.MK
a) \(AD//BC=>\frac{DM}{MK}=\frac{MA}{MC}\)
\(AB//CD=>\frac{MA}{MC}=\frac{MN}{DM}\)
=>\(\frac{DM}{MK}=\frac{MN}{DM}\)
=>\(DM^2=MN.MK\left(dpcm\right)\)
Ta có:
AD//BC (vì ABCD là hình bình hành)=>DM/MK=AM/MC
AN//DC=>.AM/MC=DM/MN
=.>DM/MK=MN/DM=>DM2=NM*NK
còn hình bạn tự vẽ nha
4. Cho hình bình hành ABCD, kẻ đường thẳng đi qua D cắt AB ở M cắt BC ở N cái AC L
a) Chứng minh AM CB DM AB CN DN suy ra AM . CN không đổi.
b) Chung minh ID' IM. IN.
c) Vẽ Bx // AC, Bx cắt MN ở E. Chứng minh EM DM EN DN
d) Lấy K bất kỳ trên cạnh CD. KI và KN cát AB ở P và Q. Chứng minh MP/MA= MO/MB
Cho hình bình hành ABCD M trên AB tia DM cắt AC và CB lần lượt tại K và N. chứng minh
a) \(\dfrac{AM}{CD}=\dfrac{AN}{CN}\)
b)\(DM^2=KM.KN\)
c)\(\dfrac{1}{DM}+\dfrac{1}{DN}=\dfrac{1}{DK}\)
Cho hình bình hành ABCD, đường thẳng đi qua D cắt AC,AB,CB theo M,N,K.
Cmr:
a) DN2=NM.MK
b) DM/DN+DM/DK=1
Mong các bạn trả lời nhanh chóng. Mình đang cần gấp!!!