cho △ABC vuông tại A, kẻ AH⊥BC (H\(\in\)BC) trên BC lấy điểm E sao cho BE=BA. Trên AC lấy điểm K sao cho AK=AH
a, so sánh CE và Ck
b,so sánh AH+BC với AC+AB
Bài 4(5,25 điểm). Cho tam giác ABC vuông tại A có AB < AC. Vẽ AH vuông góc với BC ( H = BC).
Lấy điểm D trên cạnh AC sao cho AD = AB. Vẽ DE, DK lần lượt vuông góc với BC và AH
(E thuộc BC, K thuộc AH).
a) So sánh các đoạn thẳng AH và AB.
b) Chứng minh AK = BH.
c) Vẽ đường phân giác của góc BAC cắt BC tại M, chứng minh AM đi qua trung điểm của đoạn thẳng BD
d) Tính số đo góc EAH.
e) Với giả thiết AC = 2AB; Chứng minh các đường thẳng AE, HD, CK cùng đi qua một điểm.
a: ΔAHB vuông tại H
=>AH<AB
b: Xét ΔKAD vuông tại K và ΔHBA vuông tại H có
AD=BA
góc KAD=góc HBA
=>ΔKAD=ΔHBA
=>KD=HB và AK=BH
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông BC tại H,kẻ HM vuông AB tại M. Trên tia HM lấy E sao cho M là trung điểm của EH .
a, CM AE = AH .
b, Vẽ ta phân giác AI của góc HAC. Lấy K thuộc AC soa cho AK = AH . Cm IK // AB
c,so sánh Hi và IC
d, Kẻ HF vuông tại F, HF cắt AI tại P . CM KP vuông AH
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông BC tại H,kẻ HM vuông AB tại M. Trên tia HM lấy E sao cho M là trung điểm của EH .
a, CM AE = AH .
b, Vẽ ta phân giác AI của góc HAC. Lấy K thuộc AC soa cho AK = AH . Cm IK // AB
c,so sánh Hi và IC
d, Kẻ HF vuông tại F, HF cắt AI tại P . CM KP vuông AH
a) Xét ΔAHM vuông tại H và ΔAEM vuông tại M có
AM chung
HM=EM(gt)
Do đó: ΔAHM=ΔAEM(hai cạnh góc vuông)
Suy ra: AH=AE(hai cạnh tương ứng)
Cho tam giác ABC vuông tại A có AB<AC. Kẻ AH vuông góc với BC (H thuộc BC) . Lấy điểm D trên AC sao cho AD=AB. Kẻ DE và DK lần lượt vuông góc với BC và AH (E thuộc BC, K thuộc AH).
a. So sánh độ dài BH và AK.
b. Tính số đo góc HAE.
Help me T^T
Cho ABC vuông tại A, có AB < AC . Trên cạnh BC lấy điểm D sao cho BD = BA . Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC. a. Chứng minh : BAD = BDA; b. Chứng minh : AD là phân giác của góc HAC c. So sánh ABC và ACB d. Chứng minh : AK = AH . e. Chứng minh : AB + AC < BC + AH
a: ΔBAD cân tại B
=>góc BAD=góc BDA
b: góc BAD+góc CAD=90 độ
góc BDA+góc HAD=90 độ
mà góc BAD=góc BDA
nên góc CAD=góc HAD
=>AD là phân giác của góc HAC
c: Xét ΔABC có AB<AC
nên góc ABC>góc ACB
d: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
góc HAD=góc KAD
=>ΔAHD=ΔAKD
=>AH=AK
e: (AB+AC)^2=AB^2+AC^2+2*AB*AC
=BC^2+2*AH*BC<BC^2+2*AH*BC+AH^2=(BC+AH)^2
=>AB+AC<BC+AH
Cho tam giác ABC vuông tại A có AB < AC. Kẻ AH vuông góc với BC ( \(H\in BC\) ). Lấy điểm D trên AC sao cho AD = AB. Kẻ DE và DK lần lượt vuông góc với BC và AH ( \(E\in BC\), \(K\in AH\))
a) So sánh độ dài BH và AK
b) Tinh số đo góc HAE
Cho tam giác ABC vuông tại A, tia phân giác BD của góc B cắt AC tại D. Trên BC lấy điểm E sao cho AB = BE.
a) Chứng minh BC – BA > CD – DA
b) Kẻ AH vuông góc với BC (H thuộc BC). So sánh EH và EC
a) Xét ΔABD và ΔEBD:
+) AB = BE
+) DB chung
+) ˆABD=ˆEBDABD^=EBD^ (Vì BD là phân giác)
Suy ra: ΔABD=ΔEBD (c.g.c)
- Suy ra DA = DE và DE ⊥⊥ BC
Tam giác EDC có: EC > CD – DE = CD – DA
Suy ra BC – BA > CD – DA
Có AH // DE ⇒ˆHAE=ˆAED⇒HAE^=AED^ (SLT)
Tam giác ADE cân ⇒ˆDAE=ˆAED⇒DAE^=AED^
Suy ra AE là phân giác của ˆHAC^
Kẻ EF ⊥ AC ⇒⇒ ΔAHE=ΔAFE (1)
Tam giác EFC vuông tại F ⇒ EC > EF (2)
Từ (1) và (2) ⇒ EC > HE.
P/s : hình thì tự vẽ :v
Cho tam giác ABC, kẻ BD vuông góc với AC, kẻ CE vuông góc AB. Trên tia đối của tia BD lấy điểm H sao cho BH=AC. Trên tia đối của tia CE, lấy điểm K sao cho CK=AB. So sánh AH,AK
A. AH>AK
B. AH<AK
C. AH=AK
D. AH≥AK
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc BC). Trên BC lấy điểm D sao cho BD=BA.
a. CMR: Tia AD là phân giác góc HAC
b. Kẻ DK vuông góc AC (K thuộc AC). CMR: Tam giác AHD = tam giác AKD
c. So sánh AC - AH với BC - AB