Cho ΔABC có \(\widehat{A}=90^o\) và \(\widehat{B}=60^o.\) Trên cạnh BC lấy điểm D và E sao cho BD = BA, CE = CA.
a) Chứng minh: ΔABD đều, ΔADC cân
b) Tính góc EAD
cho tam giác vuông ABC ( góc A = 90 độ ) có góc B = 60 độ . Trên cạnh BC lấy các điểm D và E sao cho BD=BA và CE =CA
a) Chứng minh tam giác ABD là tam giác đều
b) Chứng minh tam giác ADC là tam giác cân
c) Tính số đo góc EAD
a: Xet ΔBAD có BA=BD và góc B=60 độ
nên ΔBAD đều
b: góc CAD=90-60=30 độ=góc C
=>ΔDAC cân tại D
Cho tam giác vuông ABC có góc B = 60 độ . Trên cạnh BC lấy các điểm D và E sao cho BD= BA và CE = CA
a) chứng minh tam giác ABC đều
b) chứng minh tam giác ADC cân
c) tính số đo góc EAD
a) Ta có:
\(BA=BD\rightarrow\Delta BAD\)cân tại \(B\)mà \(\widehat{ABD}=\widehat{B}=60^o\)
b) Ta có: \(\Delta BAD\)đều
\(\rightarrow\widehat{BAD}=60^o\)
\(\rightarrow=\widehat{DAC}=\widehat{BAC}-\widehat{BAD}=30^o\)
Lại có: \(\Delta ABC\)vuông tại \(A\rightarrow\widehat{ACB}=90^o-\widehat{ABC}=30^o\)
\(\rightarrow\widehat{DAC}=\widehat{ACB}=\widehat{ACD}\)
\(\rightarrow\Delta ADC\)cân tại \(D\)
c) Ta có: \(CA=CE\rightarrow\Delta CAE\)cân tại \(C\)
\(\rightarrow\widehat{EAC}=90^o-\frac{1}{2}\widehat{ACB}=90^o-\frac{1}{2}\widehat{ACB=75^o}\)
\(\rightarrow\widehat{DAE}=\widehat{CAE}-\widehat{CAD}=45^o\)
đccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
Cho tam giác ABC vuông tại A có góc B bằng 60o . Trên cạnh BC lấy các điểm D và E sao cho BD=BA và CE=CA. Chứng minh:
a, Tam giác ABD đều
b, Tam giác ADC cân
c, Tính số đo góc EAD
Mấy bác giải hộ em em đang gấp
Thánh nào nhanh nhất em tik cho
Bn Tùng Quân ơi vẽ hình ra giúp mk
Cho tam giác cân ABC có \(\widehat{A} = 100^o\). Trên cạnh BC lấy các điểm D và E sao cho BD = BA , CE = CA Tính số đo góc DAE ?
( Giải bằng 2 cách )
Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.
Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.
Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC và AM ⊥ BC.
Bài 9: Cho ΔABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AD // BC và AD = BC. Chứng minh: a) ΔABC = ΔCDA. b) AB // CD và ΔABD = ΔCDB.
Bài 10: Cho ΔABC có ∠A = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác ∠B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD. b) Chứng minh: DA = DE. c) Tính số đo ∠BED.
Bài 11: Cho ΔABD, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ΔABM = ΔECM. b) AB = CE và AC // BE.
(* Chú ý: Δ là tam giác, ∠ là góc, ⊥ là vuông góc, // là song song.)
Cho tam giác cân ABC có \(\widehat{A}=100^0\). Trên cạnh BC lấy các điểm D và E sao cho BD = BA , CE = CA
Tính số đo góc DAE ?
Ta có: \(\Delta\)ABC cân tại A
\(\widehat{A}\) = 100o
=> \(\widehat{B}\) = \(\widehat{C}\) = 20o (Vì tổng các góc trong 1 \(\Delta\) luôn bằng 180o)
* Vì: BA = BD (gt)
=> \(\Delta\)BAD cân tại B.
Ta có: \(\widehat{BAD}+\widehat{B}+B\widehat{DA}=180^O\)
\(\widehat{BAD}+40^{O^{ }}+\widehat{BD}A=180^O\)
\(B\widehat{AD}+\widehat{BDA}=180^{O^{ }}-40^O=120^O\)
Mà \(\Delta\)ABD cân
=> \(\widehat{A}\)= \(\widehat{BDA}\) = 70o
* Vì AC = CE (gt)
=> \(\Delta\)ACE cân tại C.
Ta có: \(\widehat{EAC}+\widehat{C}+\widehat{CEA}=180^O\)
\(\widehat{EAC}+40^O+\widehat{CEA}=180^O\)
\(\widehat{EAC}+\widehat{CEA}=180^O-40^O=140^O\)
Mà \(\Delta\)ACE cân
=> \(\widehat{EAC}=\widehat{CEA}=70^O\)
* Xét \(\Delta\)AED có: \(\widehat{AED}=\widehat{ADE}=70^O\)
Áp dụng định lý tổng các góc trong 1 \(\Delta\) bằng 180o, ta có:
\(\widehat{DAE}+\widehat{ADE}+\widehat{DEA}=180^O\)
\(\widehat{DAE}+70^O+70^O=180^O\)
\(\widehat{DAE}=180^O-70^{O^{ }}-70^O\)
\(\widehat{DAE}=40^O\)
Cho ΔABC có AB=AC và M là trung điểm của BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE.
a) Chứng minh: ΔAMB= ΔACM. Từ đó suy ra AM ⊥ BC
b) Chứng minh: ΔABD= ΔACE. Từ đó chứng minh AM là trung trực của DE
c) Kẻ BK ⊥ AD (K AD). Trên tia đối của BK lấy điểm H sao cho BH=AE, trên tia đối của tia AM lấy điểm N sao cho AN=CE. Chứng minh: \(\widehat{MAD}=\widehat{MBH}\)
d) Chứng minh: DN ⊥ DH
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
cho ΔABC cân tại A, có \(\widehat{BAC}\) nhọn . Qua A vẽ tia phân giác của \(\widehat{BAC}\)cắt cạnh BC tại D
a) chứng minh ΔABD=ΔACD
b)Vẽ đường trung tuyến CF của ΔABC cắt cạnh AD tại G. Chứng minh G là trọng tâm của ΔABC
c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh ΔDEC cân
d) chứng minh ba điểm B,G,E thẳng hàng và AD>BD
a, xét tam giác ABD và tam giác ACD có : AD chung
AB = AC do tam giác ABC cân tại A (gt)
góc BAD = góc CAD do AD là phân giác của góc BAC (gt)
=> tam giác ABD = tam giác ACD (c-g-c)
b, tam giác ABD = tam giác ACD (câu a)
=> BD = DC (đn) mà D nằm giữa B; C
=> D là trung điểm của BC (đn)
=> AD là trung tuyến
CF là trung tuyến
CF cắt AD tại G
=> G là trong tâm của tam giác ABC (đl)
c, Ta có : tam giác EDC có EH vừa là đường trung tuyến vừa là đường cao
\(\Rightarrow\)tam giác EDC cân tại E
D, Vì EH // AD \(\Rightarrow\)theo định lí Ta - lét ta có : \(\frac{DH}{HC}=\frac{AE}{EC}\)
Mà HC = HD \(\Rightarrow\)AE = EC \(\Rightarrow\)E là trung điểm AC
\(\Leftrightarrow\)BE là đường trung tuyến \(\Rightarrow\)Ba điểm B, G , E thẳng hàng