Cho đa thức f(n) bậc 2018 thoả mãn \(f\left(n\right)=\dfrac{1}{n}\) với \(n\in\left\{1;2;3;...;2019\right\}\). Tính f(2020)
cho đa thức f(x) bậc 4 thỏa mãn \(f\left(k\right)=\dfrac{2013}{k}\) với k\(\in\left\{1,2,3,4,5,\right\}\).Tính f(6)
Cho hàm số f: \(Z^+\rightarrow Z^+\) thỏa mãn đồng thời các điều kiện :
1) \(f\left(n+1\right)>f\left(n\right)\) với \(\forall n\in Z\)
2) \(f\left(f\left(n\right)\right)=n+2000\) với \(\forall n\in Z\)
a) Chứng minh: \(f\left(n+1\right)=f\left(n\right)+1\)
b) Tính \(f\left(n\right)\)
Cho hàm số f: \(Z^+\rightarrow Z^+\) thỏa mãn đồng thời các điều kiện :
1) \(f\left(n+1\right)>f\left(n\right)\) với \(\forall n\in Z^+\)
2) \(f\left(f\left(n\right)\right)=n+2000\) với \(\forall n\in Z^+\)
a) Chứng minh: \(f\left(n+1\right)=f\left(n\right)+1\)
b) Tính \(f\left(n\right)\)
Cho đa thức f(x) bậc 4 với hệ số cao nhất là 1 và thỏa mãn: f(1)=10, f(2)=20, f(3)=30. Tính: \(\dfrac{f\left(12\right)+f\left(-8\right)}{10}+15\)
Cho hàm số y = \(\dfrac{-2}{3}x\) ; đa thức f(x) thỏa mãn điều kiện:
\(\left(x-1\right).f\left(x\right)=\left(x+4\right).f\left(x+8\right)\)với x\(\in R\).
Chứng minh đa thức f(x) có ít nhất 1 nghiệm là số nguyên tố
Cho đa thức f(x) bậc 4 có hệ số cao nhất là 1 và thỏa mãn: f(1)=10, f(2)=20, f(3)=30. Tính: \(\dfrac{f\left(12\right)+f\left(-8\right)}{10}+15\)
-Đề thiếu, giải hệ 4 ẩn phải có 4 phương trình.
Cho đa thức f(x) thoả mãn: \(x.f\left(x\right)-x.f\left(\frac{1}{x}\right)=x^2\), với mọi \(x\inℝ\). Tính f(4); \(f\left(\frac{1}{2}\right)\)
\(xf\left(x\right)-xf\left(\frac{1}{x}\right)=x^2\Rightarrow f\left(x\right)-f\left(\frac{1}{x}\right)=x\)
Thay \(x=4\) vào ta được: \(f\left(4\right)-f\left(\frac{1}{4}\right)=4\)
Thay \(x=\frac{1}{4}\) vào: \(f\left(\frac{1}{4}\right)-f\left(4\right)=\frac{1}{4}\Rightarrow f\left(\frac{1}{4}\right)=f\left(4\right)+\frac{1}{4}\)
\(\Rightarrow f\left(4\right)-f\left(4\right)-\frac{1}{4}=4\Leftrightarrow\frac{-1}{4}=4\) vô lý
Đề bài sai
➤ Bài 1 : Cho đa thức :
\(f\left(x\right)=x\left(\frac{x^{2013}}{3}-\frac{x^{2014}}{5}+\frac{x^{2015}}{7}+\frac{x^2}{2}\right)-\left(\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^2}{2}\right)\).
a/ Tìm bậc của đa thức f(x).
b/ Chứng minh : Đa thức f(x) luôn nhận giá trị nguyên với \(\forall x\)\(\in \mathbb{Z}\)
➤ Bài 2 : Cho 3 số ɑ, b, c thoả mãn :
\(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}\)
Tính \(M=4\left(a-b\right)\left(b-c\right)\left(c-a\right)^2\).
Cho đa thức \(f\left(x\right)=x^2+mx+n\) với \(m,n\in Z\). Chứng minh rằng tồn tại số nguyên k để \(f\left(k\right)=f\left(2021\right).f\left(2022\right)\)
Xét \(f\left[f\left(x\right)+x\right]=\left[f\left(x\right)+x\right]^2+m\left[f\left(x\right)+x\right]+n\)
\(=\left(x^2+mx+n+x\right)^2+m\left(x^2+mx+n+x\right)+n\)
\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+x^2+m\left(x^2+mx+n\right)+mx+n\)
\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+m\left(x^2+mx+n\right)+\left(x^2+mx+n\right)\)
\(=\left(x^2+mx+n\right)\left(x^2+mx+n+2x+m+1\right)\)
\(=\left(x^2+mx+n\right)\left[\left(x+1\right)^2+m\left(x+1\right)+n\right]\)
\(=f\left(x\right).f\left(x+1\right)\)
Thay \(x=2021\)
\(\Rightarrow f\left[f\left(2021\right)+2021\right]=f\left(2021\right).f\left(2022\right)\)
Đặt \(f\left(2021\right)+2021=k\)
Do \(f\left(x\right)\) có hệ số m;n nguyên \(\Rightarrow k\) nguyên
\(\Rightarrow f\left(k\right)=f\left(2021\right).f\left(2022\right)\) với k nguyên
Hay tồn tại số nguyên k thỏa mãn yêu cầu