Những câu hỏi liên quan
Nguyễn Thiên Kim
Xem chi tiết
TFBoys
6 tháng 10 2016 lúc 18:50

Điều kiện \(0< a,b,c\le9\) và \(a\ne b,\)\(b\ne c,\)\(c\ne a.\)

Ta viết lại \(\frac{\overline{ab}}{\overline{ca}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\left(10a+b\right)c=\left(10c+a\right)b\)\(\Leftrightarrow\)\(10ac-10bc=ab-bc\)

\(\Leftrightarrow\)\(2.5c\left(a-b\right)=b\left(a-c\right)\)(1)

Do \(c\ne0\) và \(a\ne b\) nên \(b\left(a-c\right)\) chia hết cho 5. Xảy ra 3 trường hợp:

- TH1: \(b\) chia hết cho 5, mà \(0< b\le9\) \(\Rightarrow\)\(b=5.\)

(1) \(\Leftrightarrow\)\(2.5.c\left(a-5\right)=5\left(a-c\right)\)\(\Leftrightarrow\)\(2c\left(a-5\right)=a-c\)\(\Leftrightarrow\)\(2ac-a-9c=0\)(2)

\(\Leftrightarrow\)\(a=2ac-9c=c\left(2a-9\right)\)\(\Leftrightarrow\)\(c=\frac{a}{2a-9}\)

Mặt khác (2) \(\Leftrightarrow\)\(2ac=a+9c\)\(\Leftrightarrow\)\(2c=\frac{a+9c}{a}=1+\frac{9c}{a}=1+\frac{\frac{9a}{2a-9}}{a}=1+\frac{9}{2a-9}\)

Do \(2c>0\) nên \(2a-9>0,\) do đó \(2a-9\in\left\{3;9\right\}\)Ta có \(2a-9\ne1\) vì \(a\ne c.\)

Ta tìm được \(\left(a;b;c\right)=\left(6;5;2\right),\left(9;5;1\right).\)

- TH2: \(a-c\) chia hết cho 5 nên \(a-c=5\)\(\Rightarrow\)\(a=c+5\)

(1) \(\Leftrightarrow\)\(2c\left(c+5-b\right)=b\)\(\Leftrightarrow\)\(b=\frac{2c^2+10c}{2c+1}\)\(\Leftrightarrow\)\(2b=2c+9-\frac{9}{2c+1}\)

Suy ra \(2c+1\in\left\{3;9\right\}\) do \(c\ne0.\) Tìm được \(\left(a;b;c\right)=\left(6;4;1\right),\left(9;8;4\right).\)

- TH3: \(c=a+5\)

(1) \(\Leftrightarrow\)\(2\left(a+5\right)\left(a-b\right)=-b\)\(\Leftrightarrow\)\(b=\frac{2a^2+10a}{2a-9}\)\(\Leftrightarrow\)\(2b=2a+19-\frac{9.19}{2a-9}\)

Suy ra \(b>9,\) ta không xét.

Vậy có 4 bộ số thỏa đề bài: \(\left(a;b;c\right)=\left(6;5;2\right),\left(9;5;1\right),\left(6;4;1\right),\left(9;8;4\right).\)

ShinRan
6 tháng 10 2016 lúc 20:09

a;b;c=(9;5;1),(9;8;4),(6;4;1),(6;5;2)

THANH HOA AHDANH
6 tháng 10 2016 lúc 22:31

a;b;c=(9;5;1),(9;8;4),(6;4;1),(6;5;2) là kết quả đúng đó !!!

ILoveMath
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 11 2021 lúc 22:01

1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học

2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365

 

2K9-(✎﹏ ΔΠGΣLS ΩҒ DΣΔTH...
Xem chi tiết
Phạm Anh Minh
22 tháng 1 2023 lúc 10:45

Biến đổi đến 6c -5a = b tách b trừ c bằng 5 lần c trừ a suy ra b trừ c chia hết cho 5, 

b >6,a <c lần lượt thay b bằng 7, 8, 9 tìm được c bằng 2, 3, 4 và a băng 1,2,3

 

Phạm Anh Minh
22 tháng 1 2023 lúc 10:46

Vì a,b,c khác nhau đôi một

nguyen minh phuong
Xem chi tiết
Nguyễn Thế Bảo
25 tháng 5 2016 lúc 17:37

Tham khảo: cho a,b,c đôi một khác nhau và khác 0. Biết ab là số nguyên tố và ab/bc=b/c. tìm số abc- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!

Trịnh Thục Khuê
24 tháng 6 2023 lúc 13:51

Áp dụng tính chất của dãy tỉ số bằng nhau:

ab/ac =b/c= ab-b/bc-c =10a/10b

=>b² = a.c

Do ab là nguyên tố nên b lẻ khác 5. Mà b là chữ số.

=> b ∈ 1; 3; 7; 9

Ta xét các chữ số:

- Với b = 1 thì 1² = a.c ⇒ a = c = 1. ( loại vì a; b; c khác nhau ) 

- Với b = 3 thì 3² = a.c = 9, ta chọn được giá trị a = 1 và c = 9. ( nhận )

- Với b = 7 thì b² = a.c = 49, ta chỉ chọn được cặp giá trị a = c = 7 vì a và c là chữ số. ( loại )

- Với b = 9 thì 9²  a.c = 81, ta cũng chỉ chọn được cặp giá trị a = c = 9 vì a và c là chữ số. ( loại )

Vậy abc = 139.

Hello Kitty
Xem chi tiết
soyeon_Tiểubàng giải
21 tháng 10 2016 lúc 17:54

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{ab}{bc}=\frac{b}{c}=\frac{ab-b}{bc-c}=\frac{\left(10a+b\right)-b}{\left(10b+c\right)-c}=\frac{10a}{10b}=\frac{a}{b}\)

\(\Rightarrow b^2=a.c\)

Do ab nguyên tố nên b lẻ khác 5 \(\Rightarrow b\in\left\{1;3;7;9\right\}\)

+ Với b = 1 thì 12 = a.c = 1 => a = c = 1, vô lý vì \(a\ne b\ne c\)

+ Với b = 3 thì 32 = a.c = 9 \(\Rightarrow\left[\begin{array}{nghiempt}a=c=3\\a=1;c=9\\a=9;c=1\end{array}\right.\), ta chọn được 1 cặp giá trị (a;c) thỏa mãn \(a\ne b\ne c\) và ab nguyên tố là (1;9)

+ Với b = 7 thì 72 = a.c = 49 => a = c = 7, vô lý vì \(a\ne b\ne c\)

+ Với b = 9 thì 92 = a.c = 81 => a = c = 9, vô lý vì \(a\ne b\ne c\)

Vậy abc = 139

Phạm Nguyễn Tất Đạt
21 tháng 10 2016 lúc 17:42

Ta có:\(\frac{ab}{bc}=\frac{b}{c}\)(ab,bc có dấu gạch ngang trên đầu)

\(\Rightarrow\frac{10a+b}{10b+c}=\frac{b}{c}\)

\(\Rightarrow\left(10a+b\right)c=\left(10b+c\right)b\)

\(\Rightarrow10ac+bc=10b^2+bc\)

\(\Rightarrow10ac=10b^2\)

\(\Rightarrow ac=b^2\)

\(\Rightarrow abc=\) bao nhiêu tự tính(tui quên các chữ số đôi một là như thế nào rồi và abc có dấu gạch ngang trên đầu)

 

Trịnh Thục Khuê
24 tháng 6 2023 lúc 13:51

Áp dụng tính chất của dãy tỉ số bằng nhau:

ab/ac =b/c= ab-b/bc-c =10a/10b

=>b² = a.c

Do ab là nguyên tố nên b lẻ khác 5. Mà b là chữ số.

=> b ∈ 1; 3; 7; 9

Ta xét các chữ số:

- Với b = 1 thì 1² = a.c ⇒ a = c = 1. ( loại vì a; b; c khác nhau ) 

- Với b = 3 thì 3² = a.c = 9, ta chọn được giá trị a = 1 và c = 9. ( nhận )

- Với b = 7 thì b² = a.c = 49, ta chỉ chọn được cặp giá trị a = c = 7 vì a và c là chữ số. ( loại )

- Với b = 9 thì 9²  a.c = 81, ta cũng chỉ chọn được cặp giá trị a = c = 9 vì a và c là chữ số. ( loại )

Vậy abc = 139.

le phuong anh
Xem chi tiết
anh ngoc
Xem chi tiết
mikusanpai(՞•ﻌ•՞)
11 tháng 3 2021 lúc 21:42

tham khỏa

image

Bùi Hùng Minh
Xem chi tiết
Kar Jack
Xem chi tiết
Trịnh Thục Khuê
24 tháng 6 2023 lúc 13:52

Áp dụng tính chất của dãy tỉ số bằng nhau:

ab/ac =b/c= ab-b/bc-c =10a/10b

=>b² = a.c

Do ab là nguyên tố nên b lẻ khác 5. Mà b là chữ số.

=> b ∈ 1; 3; 7; 9

Ta xét các chữ số:

- Với b = 1 thì 1² = a.c ⇒ a = c = 1. ( loại vì a; b; c khác nhau ) 

- Với b = 3 thì 3² = a.c = 9, ta chọn được giá trị a = 1 và c = 9. ( nhận )

- Với b = 7 thì b² = a.c = 49, ta chỉ chọn được cặp giá trị a = c = 7 vì a và c là chữ số. ( loại )

- Với b = 9 thì 9²  a.c = 81, ta cũng chỉ chọn được cặp giá trị a = c = 9 vì a và c là chữ số. ( loại )

Vậy abc = 139.