Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thúy Ngà
Xem chi tiết
Dr.STONE
Xem chi tiết
dia fic
Xem chi tiết
piojoi
Xem chi tiết
Akai Haruma
27 tháng 8 2023 lúc 0:44

Lời giải:
Từ đkđb suy ra:
$x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}$

$y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}$

$z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}$

$\Rightarrow (x-y)(y-z)(z-x)=\frac{(y-z)(z-x)(x-y)}{(xyz)^2}$

$\Leftrightarrow (x-y)(y-z)(z-x)(1-\frac{1}{x^2y^2z^2})=0$

$\Rightarrow (x-y)(y-z)(z-x)=0$ hoặc $1-\frac{1}{x^2y^2z^2}=1$

$\Rightarrow (x-y)(y-z)(z-x)=0$ hoặc $x^2y^2z^2=1$
Nếu $(x-y)(y-z)(z-x)=0$

$\Rightarrow x=y$ hoặc $y=z$ hoặc $z=x$

Không mất tquat giả sử $x=y$. Khi đó: $\frac{1}{y}=\frac{1}{z}$

$\Rightarrow y=z$

$\Rightarrow x=y=z$. Tương tự khi xét $y=z$ hoặc $z=x$ thì ta cũng thu được $x=y=z$
Vậy $x=y=z$ hoặc $x^2y^2z^2=1$

Rosie
Xem chi tiết
Akai Haruma
28 tháng 5 2022 lúc 11:26

Lời giải:

Sửa: $x^2\geq y^2+z^2$
Áp dụng BĐT Cauchy-Schwarz:

$P\geq \frac{y^2+z^2}{x^2}+\frac{7x^2}{2}.\frac{4}{y^2+z^2}+2007$

$=\frac{y^2+z^2}{x^2}+\frac{14x^2}{y^2+z^2}+2007$

$=\frac{y^2+z^2}{x^2}+\frac{x^2}{y^2+z^2}+\frac{13x^2}{y^2+z^2}+2007$

$\geq 2+\frac{13x^2}{y^2+z^2}+2007$ (áp dụng BĐT Cô-si)

$\geq 2+13+2007=2022$ (do $x^2\geq y^2+z^2$)

Vậy $P_{\min}=2022$

 

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2020 lúc 19:57

\(x+y+z=xyz\Leftrightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)=2^2-2.1=2\) (đpcm)

Tăng Ngọc Đạt
Xem chi tiết
Xyz OLM
3 tháng 8 2023 lúc 17:03

Có VT = \(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{zx}}\)

\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2}{xyz}\left(x+y+z\right)}\) 

\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|=VP\) (Vì x + y + z = 0) 

hiền nguyễn
Xem chi tiết
Sky Gaming
24 tháng 4 2023 lúc 23:32

Ta có bất đẳng thức AM-GM dạng phân thức sau: 

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow \dfrac{1}{a+b}\le\dfrac{1}{4}(\dfrac{1}{a}+\dfrac{1}{b})\)

Dấu ''='' xảy ra khi và chỉ khi a=b

Quay lại bài toán: Áp dụng bđt trên, ta có:

\(\dfrac{1}{2x+y+z}=\dfrac{1}{(x+y)+(x+z)}\le\dfrac{1}{4}(\dfrac{1}{x+y}+\dfrac{1}{x+z})\\ \le\dfrac{1}{16}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z})=\dfrac{1}{16}(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z})\)

Tương tự:

 \(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z})\)\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z})\)

Cộng 3 phân thức lại, ta có:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{4}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z})=\dfrac{1}{4}.4=1\)

Dấu ''='' xảy ra khi và chỉ khi: \(x=y=z=\dfrac{3}{4}\)

dinh huong
Xem chi tiết
Xyz OLM
17 tháng 4 2022 lúc 15:53

Ta có \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xyz}=1\)

\(\Leftrightarrow\dfrac{\left(yz\right)^2+\left(xz\right)^2+\left(xy\right)^2+2xyz}{\left(xyz\right)^2}=1\)

<=> (xy)2 + (yz)2 + (zx)2 + 2xyz = (xyz)2 

<=> (xy)2 + (yz)2 + (xz)2 + 2xyz(x + y + z) = (xyz)2 

<=> (xy + yz + zx)2 = (xyz)2 

<=> \(\left[{}\begin{matrix}xy+yz+zx=xyz\\xy+yz+zx=-xyz\end{matrix}\right.\)

+) Khi xy + yz + zx = -xyz 

=> \(\dfrac{xy+yz+zx}{xyz}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=-1< 0\left(\text{loại}\right)\)

=> xy + yz + zx = xyz 

<=> \(xyz\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=xyz\Leftrightarrow xyz\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-1\right)=0\)

<=> \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)

<=> \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

<=> \(\dfrac{x+y}{xy}=\dfrac{-\left(x+y\right)}{\left(x+y+z\right)z}\)

<=> \(\left(x+y\right)\left(\dfrac{1}{xz+yz+z^2}+\dfrac{1}{xy}\right)=0\)

<=> \(\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(zx+yz+z^2\right)xy}=0\)

<=> \(\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

Khi x = -y => y = 1 => P = 1

Tương tự y = -z ; z = -x được P = 1

Vậy P = 1