\(x+y+z=xyz\Leftrightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)=2^2-2.1=2\) (đpcm)
\(x+y+z=xyz\Leftrightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)=2^2-2.1=2\) (đpcm)
cho x,y,z\(\ne\)0 thỏa mãn x+y+z=xyz và\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2018\)
tnh P=\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính giá trị của biểu thức: \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
CHO xyz=1. TÍNH \(E=\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2+\left(z+\dfrac{1}{z}\right)^2-\left(x+\dfrac{1}{x}\right)\left(x+\dfrac{1}{y}\right)\left(z+\dfrac{1}{z}\right)\)
cho x,y,z thỏa mãn \(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}=1\)
Cm: \(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}=0\)
Cho x, y, z khác 0 và \(\dfrac{y^2+z^2-x^2}{2yz}+\dfrac{z^2+x^2-y^2}{2xz}+\dfrac{x^2+y^2-z^2}{2xy}=1\). Chứng minh: Trong 3 phân thức trên có 1 phân thức bằng -1 và 2 phân thức còn lại bằng 1
Cho x, y, z khác 0 và \(\dfrac{y^2+z^2-x^2}{2yz}+\dfrac{z^2+x^2-y^2}{2xz}+\dfrac{x^2+y^2-z^2}{2xy}=1\). Chứng minh: Trong 3 phân thức trên có 1 phân thức bằng -1 và 2 phân thức còn lại bằng 1
Chờ x,y,z khác 0 và \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
Chứng minh rằng : \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\)
MN giúp mk với !
Cho \(\dfrac{x^2}{z+y}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}=0\)
Cmr: \(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}=1\)
Cho x, y, z>0 và \(x+y+z\le1\). CM: \(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge10\)