Cho \(\alpha\) là một góc nhọn. Với \(n\in N\)* , \(n\ge2\).
CMR: \(\left(\cos\frac{\alpha}{2}+\sin\frac{\alpha}{2}\right)\left(\cos^n\alpha+\sin^n\alpha\right)\le\sqrt{1+\sin\alpha}\)
Cho \(\sin\alpha+\cos\alpha=\frac{\sqrt{6}}{2},a\in\left(0;\frac{\pi}{4}\right)\)
Tính giá trị biểu thức: \(P=\cos\left(\alpha+\frac{\pi}{4}\right)+\sqrt{2\left(1-\sin\alpha\cos\alpha+\sin\alpha-\cos\alpha\right)}\)
CMR: \(\frac{\sin^2\alpha}{\cos\alpha\left(1+\tan\alpha\right)}-\frac{\cos^2\alpha}{\sin\alpha\left(1+\cot\alpha\right)}=\sin\alpha-\cos\alpha\)
\(\frac{sin^2\alpha}{cos\alpha.\left(1+\frac{sin\alpha}{cos\alpha}\right)}-\frac{cos^2\alpha}{sin\alpha.\left(1+\frac{cos\alpha}{sin\alpha}\right)}=\frac{sin^2\alpha}{cos\alpha+sin\alpha}-\frac{cos^2\alpha}{sin\alpha+cos\alpha}=\frac{\left(sin\alpha+cos\alpha\right).\left(sin\alpha-cos\alpha\right)}{sin\alpha+cos\alpha}=sin\alpha-cos\alpha\)
Cho góc nhọn \(\alpha\)thỏa mãn \(\tan\alpha=\frac{2}{\sqrt{3}}\). Tính: \(B=\frac{\cos^4\alpha+\sin^2\alpha\left(\cos^2\alpha+1\right)}{2\cos^4\alpha+2\sin^2\cos^2-\frac{3}{5}\sin^2\alpha}\)
CMR
a)\(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
b)\(\frac{\tan\alpha+1}{\tan\alpha-1}=\frac{1+\cot\alpha}{1-\cot\alpha}\)
c) \(\tan^2\alpha-\sin^2\alpha=\tan^2\alpha.\sin^2\alpha\)
d)\(\frac{1-4\sin^2\alpha.\cos^2\alpha}{\left(\sin\alpha-\cos\alpha\right)^2}=\left(\sin\alpha+\cos\alpha\right)^2\)
Cho góc nhọn \(\alpha\). Tính giá trị biểu thức:
a) \(A=\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
b) \(B=\sin^4\alpha\left(1+2\cos^2\alpha\right)+\cos^4\alpha\left(1+2\sin^2\alpha\right)\)
c) \(C=\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
d)\( D=\left(3\sin\alpha+4\cos\alpha\right)^2+\left(4\sin\alpha-3\cos\alpha\right)^2\)
Cho góc nhọn α
a) Rút gọn biểu thức S=\(\cos^2\alpha+tg^2.\cos^2\alpha\)
b) Chứng minh:
\(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha.\cos\alpha}=4\)
Help me plsssssssssss
\(\dfrac{\left(sina+cosa\right)^2-\left(sina-cosa\right)^2}{sina.cosa}=4\\ VT=\dfrac{sin^2a+2sinacosa+cos^2a-sin^2a+2sinacosa-cos^2a}{sinacosa}\\ =\dfrac{4sinacosa}{sinacosa}=4=VP\)
a: \(S=cos^2a\left(1+tan^2a\right)=cos^2a\cdot\dfrac{1}{cos^2a}=1\)
b: \(VP=\dfrac{1+sin2a-1+sin2a}{\dfrac{1}{2}\cdot sin2a}=\dfrac{2\cdot sin2a}{\dfrac{1}{2}\cdot sin2a}=4=VT\)
a) S= \(cos^2a\left(tg^2a+1\right)=cos^2a.\dfrac{1}{cos^2a}=1\)
Rút gọn các biểu thức sau:
a, \(\sqrt 2 \sin \left( {\alpha + \frac{\pi }{4}} \right) - cos\alpha \),
b, \({\left( {cos\alpha + \sin \alpha } \right)^2} - \sin 2\alpha \)
\(a,\sqrt{2}sin\left(\alpha+\dfrac{\pi}{4}\right)-cos\alpha\\ =\sqrt{2}\left(sin\alpha cos\dfrac{\pi}{4}+cos\alpha sin\dfrac{\pi}{4}\right)-cos\alpha\\ =\sqrt{2}\left(sin\alpha\cdot\dfrac{\sqrt{2}}{2}+cos\alpha\cdot\dfrac{\sqrt{2}}{2}\right)-cos\alpha\\ =\sqrt{2}\cdot sin\alpha\cdot\dfrac{\sqrt{2}}{2}+\sqrt{2}\cdot cos\alpha\cdot\dfrac{\sqrt{2}}{2}-cos\alpha\\ =sin\alpha+cos\alpha-cos\alpha\\ =sin\alpha\)
\(b,\left(cos\alpha+sin\alpha\right)^2-sin2\alpha\\ =cos^2\alpha+sin^2\alpha=2cos\alpha sin\alpha-2sin\alpha cos\alpha\\ =sin^2\alpha+cos^2\alpha\\ =1\)
1.Cho các góc\(\alpha,\beta\)nhọn và \(\alpha< \beta\). Chứng minh \(\sin\left(\beta-\alpha\right)=\sin\beta\cos\alpha-\cos\beta\sin\alpha\)
2.Cho các góc \(\alpha,\beta\)nhọn và \(\alpha< \beta\).Chứng minh \(\cos\left(\beta-\alpha\right)=\cos\beta\cos\alpha+\sin\beta\sin\alpha\)
3.Cho các góc \(\alpha,\beta\)nhọn. Chứng minh \(\sin\left(\alpha+\beta\right)=\sin\alpha\cos\beta+\sin\beta\cos\alpha\)
4.Cho các góc \(\alpha,\beta\)nhọn. Chứng minh \(\cos\left(\alpha+\beta\right)=\cos\alpha\cos\beta-\sin\alpha\sin\beta\)
Rút gọn .
\(A=\dfrac{1+2\sin\alpha\cos\alpha}{\sin\alpha+\cos\alpha}\)
\(B=\left(\sin\alpha+\cos\alpha\right)^2-\left(\cos\alpha-\sin\alpha\right)^2\)
\(C=\dfrac{\left(\sin\alpha-\cos\alpha\right)^2-\left(\sin\alpha+\cos\alpha\right)}{\sin\alpha\cos\alpha}\)
Mấy bạn giúp đỡ được phần nào thì giúp , giúp hết thì tốt quá .
\(B=\left(sina+cosa\right)^2-\left(cosa-sina\right)^2=\left(sin^2a+2sinacosa+cos^2a\right)-\left(cos^2a-2cosasina+sin^2a\right)=sin^2a+2sinacosa+cos^2a-cos^2a+2cosasina-sin^2a=4sinacosa\)\(A=\dfrac{1+2sinacosa}{sina+cosa}=\dfrac{sin^2a+cos^2a+2cosasina}{sina+cosa}=\dfrac{\left(sina+cosa\right)^2}{sina+cosa}=sina+cosa\)
C mik bó tay