cho tứ giác ABCD với M,N,P,Q lần lượt là trung điểm của AB;CD; BC;AD. G là điểm của DP và BN, K là giao điểm của DM và BQ. C/m BD,AK,CG đồng quy
Bài 1 cho tứ giác ABCD, P,Q lần lượt là trung điểm của AD và BC,a chứng minh PQ hoặc AB AC 2,b tứ giác ABCD là hình thang PQ AB CD 2. Bài 2 cho hình thang ABCD, AB đáy lớn. M ,N,P,Q lần lượt là trung điểm của AD BC AC BD.a chứng Minh M N P Q thẳng hàng.b Cho AB a CD b với a b. Tính MN PQ.c Cm rằng nếu MP PQ QN thì a 2b
cho tứ giác ABCD gọi M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA
với điều kiện câu b hãy tính tỉ số diện tích của tứ giác ABCD và tứ giác MNPQ
cho tứ giác abcd có ac vuông góc với bd . m ,n,p,q lần lượt là trung điểm của ab,bc,cd,da. Chứng minh tứ giác mnpq là hcn
a: Xét ΔBAD có
M,Q lần lượt là tđiểm của AB và AD
nên MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N,P lần lượt là trung điểm của CB và CD
nên NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Xét ΔABC có
M,N lần lượt là trung điểm của BA và BC
nên MN là đường trung bình
=>MN=AC/2 và MN//AC
=>MN vuông góc với BD
=>MN vuông góc với MQ(3)
Từ (1) và (2) suy ra MNPQ là hình bình hành(4)
Từ (3) và (4) suy ra MNPQ là hình chữ nhật
Cho tứ giác ABCD. Gọi K,L,M,N lần lượt là trung điểm của DC, DA, AB, BC. Gọi giao điểm của AK với BL, DN lần lượt là P và S. CM cắt BL, DN lần lượt tại Q và R
a)Xác định diện tích tứ giác PQRS nếu biết diện tích tứ giác ABCD, AMQP, CKSR tương ứng là So,S1,S2
cho tứ giác ABCD . Gọi E,F lần lượt là giao điểm của AB,CD,AD và BC; M,N,P,Q lần lượt là trung điểm của AE,EC,CF,FA. Chứng minh tứ giác MNPQ là hình bình hành. AI VẼ HÌNH GIÚP MÌNH VỚI
Cho tứ giác ABCD.Gọi K,L,M,N lần lượt là trung điểm của DC,DA,AB,BC.Gọi giao điểm của AK với BL,DN lần lượt là P và S.CM cắt BL,DN lần lượt tại Q và R.Tính diện tích tứ giác PQRS biết S tam giác ABCD,AMQP,CKSR lần lượt là a,b,c. giúp mình với
ảnh ở đâu đấy,làm sao vậy chỉ đi
cho tứ giác ABCD . Gọi E,F lần lượt là giao điểm của AB,CD,AD và BC; M,N,P,Q lần lượt là trung điểm của AE,EC,CF,FA. Chứng minh tứ giác MNPQ là hình bình hành
EP // MF (EP là đường trung bình trong ∆BAF) và EP = AF / 2 = MF => MENF là hình bình hành.
=> MP và EF cắt nhau tại trung điểm I.
FN // DE và FN = DE / 2 = QE => FQEN là hình bình hành => QN và EF cắt nhau tại trung điểm I
=> MP và QN cắt nhau tại trung điểm của chúng => MNPQ là hình bình hành
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Khi đó tứ giác MNPQ là hình gì? Tại sao?
Xét ΔABD có : M là trung điểm AB (gt)
Q là trung điểm AD (gt)
=> MQ là đường trung bình của ΔABD
=> MQ // BD ; MQ = 1/2 BD (1)
Xét ΔCBD có : N là trung điểm BC (gt)
P là trung điểm CD (gt)
=> NP là đường trung bình của ΔCBD
=> NP // BD ; NP = 1/2 BD (2)
Từ (1) và (2) => MQ // NP; MQ = NP
Xét tứ giác MNPQ có : MQ // NP (cmt)
MQ = NP (cmt)
=> Tứ giác MNPQ là hình bình hành
cho tứ giác abcd gọi m ,n,p,q lần lượt là trung điểm của ab,bc,cd và da chứng minh tứ giác mnpq là hình bình hành
Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
Câu 8: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AD và BC, có bao nhiêu vectơ bằng với DM từ các điểm đã cho? A. 3. B. 4. C. 5. D. Câu 9: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chọn khẳng định đúng trong các khẳng định sau.
A. AD BC . B. MQ PN . C. MN QP . D. AB DC .
Câu 10: Cho tam giác ABC với trực tâm H, D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây là đúng
A. HA CD và AD CH .
B. HA CD và DA HC .
C. HA CD và AD HC .
D. HA CD và AD HC và OB OD .
Câu 1: Cho ABCD là hình vuông cạnh bằng 1. Khi đó độ dài của AC bằng
A. 1. B. 2. C. 2. D. 3.
Câu 2: Cho tam giác ABC vuông tại C có cạnh AC cm BC cm 4 , 3 . Độ dài của vectơ AB là
A. 7 . cm B. 6 . cm C. 5 . cm D. 4 . cm
Câu 3: Cho hình vuông ABCD tâm O, cạnh 2a. Độ dài vectơ DO bằng
A. 2 2. a B. 2 . 2 a C. a 2. D. 2 2. a
Câu 4: Cho đoạn thẳng AB cm 10 , điểm C thỏa mãn AC CB . Độ dài vectơ AC là
A. 10 . cm B. 5 . cm C. 20 . cm D. 15 . c