Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thân Nhật Minh
Xem chi tiết
ST
14 tháng 11 2018 lúc 14:01

Ta có: a3+b3+c3=3abc <=> a3+b3+c3-3abc=0

<=>\(a^3+3a^2b+3ab^2+b^3+c^3-3ab\left(a+b\right)-3abc=0\)

<=>\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

<=>\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

<=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

<=>\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Mà a+b+c khác 0

=>\(a^2+b^2+c^2-ab-bc-ca=0\)

<=>\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

<=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=>\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}}a=b=c}\)

=>\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

Thanh Thảoo
Xem chi tiết
Nguyễn Ngọc Lộc
6 tháng 3 2020 lúc 16:44

- Ta có : \(a^3+b^3+c^3=3abc\)

=> \(a^3+b^3+c^3-3abc=0\)

=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(a+b+c\ne0\)

=> \(a^2+b^2+c^2-ab-bc-ac=0\)

=> \(\frac{\left(a^2-2ab+b^2\right)+\left(b^2-2ac+c^2\right)+\left(c^2-2ac+a^2\right)}{2}=0\)

=> \(\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}=0\)

=> \(a-b=b-c=c-a=0\)

=> \(a=b=c\)

- Thay a = b = c vào biểu thức N ta được :

\(N=\frac{a^2+a^2+a^2}{\left(a+a+a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

Vậy giá trị của N = \(\frac{1}{3}\) khi \(a^3+b^3+c^3=3abc\)\(a+b+c\ne0\)

Khách vãng lai đã xóa
Crkm conan
Xem chi tiết
Edogawa Conan
Xem chi tiết
Hồng Quang
27 tháng 3 2018 lúc 21:20

Được bạn nhé :"))))

Ủng hộ mình = cách theo dõi mình nha

TM Vô Danh
27 tháng 3 2018 lúc 21:24

a+b+c=0

\(\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc=0\)

\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)+\left(3bc^2+3b^2c+3abc\right)-3abc=0\)\(\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b+c\right)+3ac\left(a+b+c\right)+3bc\left(a+b+c\right)-3abc=0\)\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

mk ko chắc cách bn đúng nhưng cách của mk là phù hợp nhất đó

Akai Haruma
28 tháng 3 2018 lúc 14:34

Không nên chứng minh như thế này nhé. Ở ngay phần \(a+b=\frac{3abc}{-3ab}\) đã sai sót vì bạn không tính đến trường hợp \(a=0\) hoặc $b=0$ đã thực hiện phép chia như vậy.

Sử dụng hằng đẳng thức: \((a+b)^3=a^3+b^3+3ab(a+b)\) ta có:

\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3\)

Vì \(a+b+c=0\Rightarrow a+b=-c\). Thay vào biểu thức trên:

\((a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=-c^3+3abc+c^3=3abc\)

Do đó:

\(a^3+b^3+c^3=3abc\)

gorosuke
Xem chi tiết
Xuân Lộc
Xem chi tiết
hello
8 tháng 4 2018 lúc 19:26

bình phương (1/a+1/b+1/c) rồi áp dụng HĐT tính bình thường

Thân Nhật Minh
Xem chi tiết
Tuấn Nguyễn
14 tháng 11 2018 lúc 16:40

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\)

\(\Rightarrow2\left(ab+bc+ac\right)=0\)

\(\Rightarrow ab+bc+ac=0\)

\(\Rightarrow\frac{\left(a+b+c\right)}{abc}=0\)

\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ac}{abc}=0\)

\(\Rightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{-1}{c}\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(\frac{-1}{c}\right)^3\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{ab}.\left(-\frac{1}{c}\right)=0\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{ab}=0\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\left(đpcm\right)\)

Pham Van Hung
14 tháng 11 2018 lúc 11:44

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\Rightarrow ab+bc+ac=0\)

\(\Rightarrow\frac{ab+bc+ac}{abc}=0\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\left(\frac{1}{a}\right)^3+\left(\frac{1}{b}\right)^3+\left(\frac{1}{c}\right)^3=3.\frac{1}{a}.\frac{1}{b}.\frac{1}{c}\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

Sgsdrdg ebay đh durham
Xem chi tiết
pham thi thu trang
19 tháng 6 2017 lúc 16:04

Nhận xét:\(\left(a+b\right)^3=a^3+b^3+3a^2b+3ab^2\)

=>   \(a^3+b^3=\left(a+b\right)^3-3a^2b-3ab^2\)

ta có \(a^3+b^3+c^3-3abc\)

Thay vào biểu thức trên ta có:

\(\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)

\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

=\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

=\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

Vay \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)

Do \(a^3+b^3+c^3=3abc\)và theo đầu bài \(a+b+c\ne0\)nen  \(a^2+b^2+c^2-ac-bc-ab=0\)

=> \(a=b=c\)

Vay  N = \(\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}\)

hotboy2002
Xem chi tiết
Phước Nguyễn
7 tháng 12 2015 lúc 21:55

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Mà  \(a+b+c\ne0\left(gt\right)\)

\(\Leftrightarrow a=b=c\)

Do đó:

\(A=\frac{a^2+2b^2+6c^2}{\left(a+b+c\right)^2}+2015=\frac{a^2+2a^2+6c^2}{\left(a+a+a\right)^2}+2015=\frac{9a^2}{9a^2}+2015=1+2015=2016\)