bình phương (1/a+1/b+1/c) rồi áp dụng HĐT tính bình thường
bình phương (1/a+1/b+1/c) rồi áp dụng HĐT tính bình thường
phân tích đa thức:
x4 + 2021x2 + 2020x + 2021
a(b2 - c2) + b(c2 - a2) + c(a2 - b2)
a3(b - c) + b3(c - a) + c3(a - b)
(x + y + z)3 - (x + y - z)3 - (x - y + z)3 - (-x + y + z)3
a, a( b + c)2(b - c) + b( c + a)2( c - a) + c( a + b)2( a - b)
b, a( b - c )3 + b( c - a)3 + c( a - b)3
c, a2b2( a - b) + b2c2( b - c) + c2a2( c - a)
d, a( b2 + c2) + b( c2 + a2) + c( a2 + b2) - 2abc - a3 - b3 - c3
e, a4( b - c) + b4( c - a) + c4( a - b)
Cho a+b+c=3 và ab+bc+ca=4
Tính giá trị biểu thức:K= a2+b2+c2+2021
Cho abc khác 0, \(a^3+b^3+c^3=3abc\) . Tính A= \(\left(1+\dfrac{a}{b}\right).\left(1+\dfrac{b}{c}\right).\left(1+\dfrac{c}{a}\right)\)
a^2 + b^2 + 1 >= ab + a + b. Cho a+b+c =0 chung minh a^3 + b^3 + c^3 = 3abc
Cho : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) và \(a+b+c=3abc\)
CMR : \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=7\)
chứng minh rằng
a) \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
b)\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\cdot\left(a^2+b^2+c^2+ab+bc-ca\right)\)
áp dụng suy ra kết quả
a) \(a^3+b^3+c^3=3abc\) thì \(\left\{{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
b) cho \(a^3+b^3+c^3=3abc\left(a+c\ne0\right)\)
tính B= \(\left(1+\dfrac{a}{b}\right)\cdot\left(1+\dfrac{b}{c}\right)\cdot\left(1+\dfrac{c}{a}\right)\)
Cho a\(^3\)\(+b^3+c^3=3abc\). Tính giá trị biểu thức:
A\(=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
Cho a, b, c là các số dương thỏa mãn: a3 + b3 + c3 = 3abc. Tính giá trị biểu thức:
P = \(\left(\dfrac{a}{b}-1\right)+\left(\dfrac{b}{c}-1\right)+\left(\dfrac{c}{a}-1\right)\)