b) Ta có: \(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)
\(=ab^2-ac^2+bc^2-ba^2+ca^2-cb^2\)
\(=\left(ab^2-cb^2\right)+\left(ca^2-c^2a\right)+\left(bc^2-ba^2\right)\)
\(=b^2\left(a-c\right)+ca\left(a-c\right)+b\left(c^2-a^2\right)\)
\(=\left(a-c\right)\left(b^2+ca\right)-b\left(a-c\right)\left(a+c\right)\)
\(=\left(a-c\right)\left(b^2+ca-ba-bc\right)\)
\(=\left(a-c\right)\left[b\left(b-a\right)+c\left(a-b\right)\right]\)
\(=\left(a-c\right)\left[b\left(b-a\right)-c\left(b-a\right)\right]\)
\(=\left(a-c\right)\left(b-a\right)\left(b-c\right)\)
trời ơi cái qq gì í đây