Cho h.thang vuông ABCD(góc A=góc D=900) có AB=1/2CD. Gọi H là h.chiếu của D lên AC. Gọi M,N là trung điểm HCvaf HD. CMINH
a) MN là đtrung bình of tam giác HCD
b) tứ giác ABMN là h.Bình hành
C) góc BMD=900
Cho hình thang vuông ABCD ( A = D = 90 ° , CD = 2AB ) . Gọi H là hình chiếu của D lên AC . Gọi M , N lần lượt là trung điểm của HC và HD . a / Chứng minh MN = AB . b / Chứng minh tứ giác ABMN là hình bình hành . c / Chứng minh N là trực tâm tam giác AMD và DMB = 90°
a: Xét ΔHDC có
N là trung điểm của HD
M là trung điểm của HC
Do đó: NM là đường trung bình của ΔHDC
Suy ra: NM//DC và \(NM=\dfrac{CD}{2}\)
mà AB//DC và \(AB=\dfrac{CD}{2}\)
nên NM//AB và NM=AB
b: Xét tứ giác ABMN có
AB//NM
AB=NM
Do đó: ABMN là hình bình hành
Cho hình thang vuông ABCD (góc A=góc D=90 độ),có AB=1/2CD và E là trung điểm của CD.Gọi H là chân đường vuông góc kẻ từ D xuống cạnh AC,M là trung điểm của HC,N là trung điểm của DH.Chứng minh rằng:
a)Tứ giác ABED là hình chữ nhật;
b)Tứ giác ABMN là hình bình hành;
c)BM vuông góc MD.
cho hình thang vuông abcd( góc A =góc D= 90 độ), CD =2 lần AB.Gọi H là hình chiếu của D lên AC . gọi M,N lần lượt là trung điểm của HC và HD . chứng minh :a) MN=AB, b) Tứ giác AHBM là hình bình hành
a) Ta có : M, N lần lượt là trung điểm của HC, HD => MN là đường trung bình của tam giác HDC => MN // CD và MN = 1/2 CD
MN = 1/2 CD => 2MN = CD, mà AB = CD (gt) => MN = AB (đpcm)
b) Hình trhang ABCD vuông tại A và D (gt) => AB // CD, mà MN // CD (cmt) nên AB // MN
Mà AB = MN (cmt) nên ABMN là hình bình hành (đpcm)
CHỌN giùm mình nha !!!!!!!!!!!!!!!!!!!!!
không biết tự mà làm haaaaaaaaaaa!!!
Cho hình thang vuông ABCD ( góc A = góc D = 90 độ) có AB = CD/2. Gọi H là hình chiếu của D trên AC. Gọi M, N là trung điểm của HC, HD
a) CM ABMN lalà hình bình hành
b) CM N là trực tâm của tam giác AMD
c) Góc BMD = 90 độ
d) Cho CD = 16 cm, AD = 6 cm. Tính diện tích ABCD
k cho mình nha đúng 100 %
cho hình thang vuông ABCD có góc A = góc B = 900 , AD = DC 2AB . vẽ DH vuông góc với AC (H thuộc AC). gọi M,N lần lượt là trung điểm của HC và HD . Cm
a) DH là tia phân giác góc DAC
b) tứ giác DNMC là hình thang cân
c) tứ giác ABMN là hình bình hành
d) góc BMD = 900
cho tam giác vuông ABC có A=90 . Kẻ AH vuông góc với BC tại H. Kẻ HD vuông góc với AC tại D và HE vuông góc với AB tại E. Gọi M là trung điểm của HC
a.Cminh tứ giác AEHD là hình chữ nhật
b. Gọi N là trung điểm AE. Gọi O là giao điểm cảu AH và DE. CMINH 3 ĐIỂM O,M,N thẳng hàng
c. cminh tam giác MDE là tam giác vuông
d. Giả sử tứ giác OHMD là hình vuông có diện tích bằng a. Tính diện tích ABC theo a
a: Xét tứ giác AEHD có
\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
Do đó: AEHD là hình chữ nhật
cho tam giác vuông ABC có A=90 . Kẻ AH vuông góc với BC tại H. Kẻ HD vuông góc với AC tại D và HE vuông góc với AB tại E. Gọi M là trung điểm của HC
a.Cminh tứ giác AEHD là hình chữ nhật
b. Gọi N là trung điểm AE. Gọi O là giao điểm cảu AH và DE. CMINH 3 ĐIỂM O,M,N thẳng hàng
c. cminh tam giác MDE là tam giác vuông
d. Giả sử tứ giác OHMD là hình vuông có diện tích bằng a. Tính diện tích ABC theo a
a: Xét tứ giác AEHD có
\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
Do đó: AEHD là hình chữ nhật
Cho hình thang vuông ABCD ( góc A = góc D = 90° ) có CD = 2AB. Gọi H là hình chiếu của D trên đường chéo AC và M, N lần lượt là trung điểm của HC và HD. Chứng minh:
a) Tứ giác ABMN là hình bình hành
b) BM vuông góc với DM
giúp mình nha, ai làm nhanh nhất mình sẽ tick ^^ !
Cho hình chữ nhật ABCD. Vẽ BH vuông góc AC tại H, gọi M là trung điểm BH và N là trung điểm AH.
a) Chứng minh MN song song AB và tứ giác ABMN là hình thang.
b) Gọi E là trung điểm CD. Chứng minh tứ giác MNEC là hình bình hành.
c) Tính số đo góc BNE.