Cho p >=5; p và 2p+1 là số nguyên tố.CMR:4p+1 là số nguyên tố
Tìm * biet
12*5* chia het cho 3, cho 5
*45* chia het cho 2, cho 3 , cho 5, cho 9
67** chia het cho 5, cho 9
Cho S = 5+5^2+5^3+...+5^2012
chứng minh rằng S chia hết cho 65
mình làm thế này có đúng ko , mong mọi người nhận xét :
tổng S đều có số hạng 5 nên S chia hết cho 5 (1)
S= 5 + 5^2 + 5^3 + .. + 5^2012
= (5 + 5^3) + (5^2 + 5^4) + (5^5 + 5^7) + ... + ( 5^2010 + 5^2012 )
= 5 ( 1 + 5^2 ) + 5^2 (1+5^2) +....+ 5^2010 (1+5^2)
= 26(5+5^2+...+5^2010)
=> S chia hết cho 26
vì 26 = 2.13 mà (2;13)=1
=> S chia hết cho 13 (2)
từ (1) và (2)
=> S chia hết cho 5
S chia hết cho 13
mà 13.5 = 65 và (13;5)=1
=> S chia hết cho 65
Ai nhận xét sẽ có tick
Cách này cũng đúng nhưng có cách khác nhanh hơn
S = ( 5 + 5^2 + 5^3 + 5^4 ) + .....
Gộp 4 số liên tiếp lại rồi C/M
Chúc học tốt
- cho S = 5+ 5^2 + 5^3 + 5^4+ 5^5+.......+5^2004
- chứng minh S chia hết cho 30 và chia hết cho 126.
S = 5+52+53+54+....+52004
S = (5+52)+(53+54)+...+(52003+52004)
S = 1(5+52)+52(5+52)+.....+52002(5+52)
S = 1.30 + 52.30 +.....+52002.30
S = 30.(1+52+....+52002) chia hết cho 30
=> S chia hết cho 30 (Đpcm)
bài 1:cho A=5+5 mũ 2+5 mũ 3+...+5 mũ 2006
CMR:A chia hết cho 120.(cmr là chứng minh rằng)
bài 2:cho B=5+5 mũ 2+5 mũ 3+...+5 mũ 80.
CMR:B chia hết cho 30.
câu a nhóm 4 số lại(mũ liên tiếp)
câu b nhóm 4 số lại(mũ liên tiếp)
bạn ơi, bạn có thể giải chi tiết đc ko!rồi mình cho.
Cho S = \(5+5^2+5^3+...+5^{2012}\)
chứng minh rằng S chia hết cho 65
mình làm thế này có đúng ko , mong mọi người nhận xét :
tổng S đều có số hạng 5 nên S chia hết cho 5 (1)
S= 5 + 5^2 + 5^3 + .. + 5^2012
= (5 + 5^3) + (5^2 + 5^4) + (5^5 + 5^7) + ... + ( 5^2010 + 5^2012 )
= 5 ( 1 + 5^2 ) + 5^2 (1+5^2) +....+ 5^2010 (1+5^2)
= 26(5+5^2+...+5^2010)
=> S chia hết cho 26
vì 26 = 2.13 mà (2;13)=1
=> S chia hết cho 13 (2)
từ (1) và (2)
=> S chia hết cho 5
S chia hết cho 13
mà 13.5 = 65 và (13;5)=1
=> S chia hết cho 65
Ai nhận xét sẽ có tick
từ (1) và (2)
=> S ⋮5
mình nghĩ hơi thừa chỉ cần từ (1) là đủ rồi
nên đánh (2) vào"=>S⋮5"
Để khi chứng tỏ thì nói "từ (1) và (2) => S ⋮ 65"
1) Ở (1) vô lý nha bạn, tổng S đều có số hạng 5 là sao? số hạng có tận cùng là 5 chứ.
Ok, mik nhận xét thế thôi nhé. Cách trình bày của bạn khá chặt chẽ. Mà bạn viết vào vở thì sử dụng kí hiệu toán học ý, trong toán đừng viết chữ nhiều quá. ( VD: chia hết cho)
1.viết 5 số có 5 chữ số khác nhau:a.chia hết cho 2,b.chia hết cho 3,c.chia hết cho 5,đ.chìa hết cho 5 ,chia hết cho cả 5 và 9.2.viết 5 số khác nhau:a.chia hết cho6,b.chia hết cho 15,chia hết cho 18,chia hết cho 45
Cho a-b chia hết cho 5 CMR
a-6b chia hết cho 5
: 2a-7b chia hết cho 5
: 26a-31b+2015 chia hết cho 5
-) CM: a-6b chia hết cho 5:
Ta có: a-6b = a-b-5b
Vì 5 chia hết cho 5 nên 5b chia hết cho 5
Mà a-b chia hết cho 5 nên a-b-5b chia hết cho 5
Hay a-6b chia hết cho 5
-) CM: 2a-7b chia hết cho 5
Ta có: 2a-7b=2a-2b-5b=2(a-b)-5b
Vì 5 chia hết cho 5 nên 5b chia hết cho 5
Mà a-b chia hết cho 5 nên 2(a-b) chia hết cho 5
Do đó, 2(a-b)-5b chia hết cho 5 hay 2a-7b chia hết cho 5
-) CM: 26a-31b+2015 chia hết cho 5
Ta có: 26a-31b+2015= 26a-26b-5b+403.5=26(a-b)+5(403-b)
Vì 5 chia hết cho 5 nên 5(403-b) chia hết cho 5
Mà a-b chia hết cho 5 nên 26(a-b) chia hết cho 5
Do đó 26(a-b)+5(403-b) chia hết cho 5
Hay 26a-31b+2015 chia hết cho 5
tick nha....!!!!!!!!!!!!!!!!!
Cho a-b chia hết cho 5 CMR
a-6b chia hết cho 5 :
2a-7b chia hết cho 5:
26a-31b+2015 chia hết cho 5
Cho P=5+5 mũ 2+5 mũ 3+...+5 mũ 20 . Chứng minh rằng :
a,P chia hết cho 5
b,P chia hết cho 6
c,P chia hết cho 13
a) P = 5 + 5² + 5³ + ... + 5²⁰
= 5(1 + 5 + 5² + ... + 5¹⁹) ⋮ 5
Vậy P ⋮ 5
b) P = 5 + 5² + 5³ + ... + 5²⁰
= 5.(1 + 5) + 5³.(1 + 5) + ... + 5¹⁹.(1 + 5)
= 6.(5 + 5³ + ... + 5¹⁹) ⋮ 6
Vậy P ⋮ 6
c) P = 5 + 5² + 5³ + 5⁴ + ... + 5¹⁷ + 5¹⁸ + 5¹⁹ + 5²⁰
= 5.(1 + 5 + 5² + 5³) + ... + 5¹⁷.(1 + 5 + 5² + 5³)
= 5.156 + ... + 5¹⁷.156
= 156.(5 + 5⁵ + 5⁹ + 5¹³ + 5¹⁷)
= 13.12.(5 + 5⁵ + 5⁹ + 5¹³ + 5¹⁷) ⋮ 13
Vậy P ⋮ 13
a: P=5(1+5+5^2+...+5^19) chia hết cho 5
b: P=5(1+5)+5^3(1+5)+...+5^19(1+5)
=6(5+5^3+...+5^19) chia hết cho 6
c: P=5(1+5+5^2+5^3)+...+5^17(1+5+5^2+5^3)
=156(5+5^5+5^9+5^13+5^17) chia hết cho 13
cho \(S=5+5^2+5^3+5^4+5^5+5^6+...+5^{2012}.\)chứng tỏ S chia hết cho 65
cho biểu thứ M = \(5+5^2+5^3+...+5^{80}\).chứng tỏ rằng :
a, M chia hết cho 6
b, M không phải là số chính phương
M = 5 + 52 + 53 + ... + 52012.
= ( 5+1 ).52 + ( 5+1 ). 53 +...+( 5+1 ). 5 80
=6. 52 + 6. 53 + ...+ 6. 5 80
=\(6\).52.53x...x5 80
Vậy M chia hết cho 6.