Rút gọn :
a) \(\dfrac{2x}{x+y}\)+ \(\dfrac{y-x}{x+y}\)
b) \(\dfrac{x+6}{x^2-4}\)+ \(\dfrac{2}{x\left(x+2\right)}\)
mk đang cần gấp mong các bạn giúp mk , mk cảm ơn
có ai bt lm bài này k giúp mk vs mk đg cần rất rất gấp mong các bn giúp cho
VD3: cho biểu thức
P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right).\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)
a, rút gọn P
b, tính giá trị P biết : x=7+4\(\sqrt{3}\)
a. \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\cdot\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)
<=> \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
<=> \(P=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
<=> \(P=\dfrac{\sqrt{x}+2}{x-2\sqrt{x}}\)
b. Khi \(x=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\) => \(\sqrt{x}=2+\sqrt{3}\)
=> \(P=\dfrac{2+\sqrt{3}+2}{7+4\sqrt{3}-2\left(2+\sqrt{3}\right)}=\dfrac{4+\sqrt{3}}{7+4\sqrt{3}-4-2\sqrt{3}}=\dfrac{4+\sqrt{3}}{3+2\sqrt{3}}=\dfrac{5\sqrt{3}-6}{3}\)
check giùm mik
a: Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\cdot\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)
\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-2+4}{x-4}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
b: Thay \(x=7+4\sqrt{3}\) vào P, ta được:
\(P=\dfrac{2+\sqrt{3}+2}{\sqrt{3}\left(2+\sqrt{3}\right)}=\dfrac{-6+5\sqrt{3}}{3}\)
\(B=\dfrac{\sqrt{x^2y^2}}{xy}+\dfrac{\sqrt{\left(x-y\right)^2x^2}}{x\left(x-y\right)}-\dfrac{\sqrt{\left(x-y\right)^2y^2}}{y\left(x-y\right)}\) với xy>0; x khác y
rút gọn các biểu thức
giúp mk vs ạ mk cần gấp
cảm ơn ạ
\(B=\dfrac{xy}{xy}+\dfrac{\left(x-y\right)x}{x\left(x-y\right)}-\dfrac{y\left(x-y\right)}{y\left(x-y\right)}=1\)
Cho P=\(\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn P
b) Tìm GTNN
Lm nhanh giúp mk nhé!Mk đang cần gấp!
a, \(\dfrac{5}{4-\sqrt{11}}+\dfrac{1}{3+\sqrt{7}}-\dfrac{6}{\sqrt{7}-2}-\dfrac{\sqrt{7}-5}{2}=4+\sqrt{11}-3\sqrt{7}\)
b, \(\dfrac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}-\dfrac{\sqrt{x}-\sqrt{y}}{2\left(\sqrt{x}+\sqrt{y}\right)}-\dfrac{y+x}{y-x}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
Các bạn giúp mk vs, Mk cần gấp.
a: \(=4+\sqrt{11}+\dfrac{3}{2}-\dfrac{1}{2}\sqrt{7}-4-2\sqrt{7}-\dfrac{1}{2}\sqrt{7}+\dfrac{5}{2}\)
\(=4+\sqrt{11}-3\sqrt{7}\)
b: \(VT=\dfrac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y+2x+2y}{2\left(x-y\right)}\)
\(=\dfrac{2x+4\sqrt{xy}+2y}{2\left(x-y\right)}=\dfrac{x+2\sqrt{xy}+y}{x-y}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
cho bt Q = \(\left(\dfrac{x-2}{x^2-1}-\dfrac{x+2}{x^2+2x+1}\right).\left(\dfrac{1-x^2}{2}\right)^2\)
a) tìm đkxđ và rút gọn Q
b) tìm x để Q - 4 = 5x
Mik đang cần gấp mik cảm ơn !!!
Tìm x :
\(\dfrac{1}{3}x-\dfrac{1}{2}=\dfrac{3}{4}x+\dfrac{1}{15}\)
\(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)
Mk đang cần gấp lắm xin hãy giúp mk làm ơn
a) \(\dfrac{1}{3}x-\dfrac{1}{2}=\dfrac{3}{4}x+\dfrac{1}{15}\)
\(\Rightarrow\dfrac{1}{3}x-\dfrac{3}{4}x=\dfrac{1}{2}+\dfrac{1}{15}\)
\(\Rightarrow\dfrac{4}{12}x-\dfrac{9}{12}x=\dfrac{15}{30}+\dfrac{2}{30}\)
\(\Rightarrow\dfrac{-5}{12}x=\dfrac{17}{30}\)
\(\Rightarrow x=\dfrac{-102}{75}\)
\(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)
\(\Rightarrow\left(x-\dfrac{2}{9}\right)^3=\dfrac{64}{729}\)
\(\Rightarrow x-\dfrac{2}{9}=\dfrac{4}{9}\)
\(\Rightarrow x=\dfrac{2}{3}\)
10) cho biểu thức
P= \(\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
a) rút gọn P
b)tính giá trị của P biết \(x=\dfrac{2}{2+\sqrt{3}}\)
giúp mk vs ah mk cần gấp
Lời giải:
ĐKXĐ: $x>0$
a. \(P=\frac{x-1}{\sqrt{x}}:\left[\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}+1)}+\frac{1-\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)}\right]\)
\(=\frac{x-1}{\sqrt{x}}:\frac{x-1+1-\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)}=\frac{x-1}{\sqrt{x}}:\frac{\sqrt{x}(\sqrt{x}-1)}{\sqrt{x}(\sqrt{x}+1)}=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{(\sqrt{x}+1)^2}{\sqrt{x}}\)
b.
\(x=\frac{4}{4+2\sqrt{3}}=(\frac{2}{\sqrt{3}+1})^2\Rightarrow \sqrt{x}=\frac{2}{\sqrt{3}+1}\)
\(P=\frac{(\frac{2}{\sqrt{3}+1}+1)^2}{\frac{2}{\sqrt{3}+1}}=\frac{3+3\sqrt{3}}{2}\)
a: Ta có: \(P=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\dfrac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}\)
Rút gọn các biểu thức sau:
a/\(\left(x+\dfrac{1}{3}x+\dfrac{1}{9}\right)\left(x-\dfrac{1}{3}\right)-\left(x-\dfrac{1}{3^{ }}\right)^2\)
b/\(\left(x_{ }^2-2\right)^3-x\left(x+1\right)\left(x-1\right)+x\left(x-3\right)\)
MẤY BẠN GIÚP MK VS Ạ AI NHANH MK VOTE NHA
a) \(=x^3-\dfrac{1}{27}-x^2+\dfrac{2}{3}x-\dfrac{1}{9}=x^3-x^2+\dfrac{2}{3}x-\dfrac{2}{27}\)
b) \(=x^6-6x^4+12x^2-8-x^3+x+x^2-3x=x^6-6x^4-x^3+13x^2-2x-8\)
Câu 2: Tìm x,y,z biết:
a) \(\dfrac{x+y}{2014}=\dfrac{xy}{2015}=\dfrac{x-y}{2016}\)
b) \(\left|x-6\right|+\left|x-10\right|+\left|x-2022\right|+\left|y-2014\right|+\left|z-2015\right|=2016\)
Xin lỗi vì đăng ko đug dạng bài nhưng mk mong các bn giúp mk vs ak. mk cảm ơn
a) Tính chất dãy tỉ số bằng nhau: \(\dfrac{x+y}{2014}=\dfrac{x-y}{2016}=\dfrac{x+y+x-y}{2014+2016}=\dfrac{2x}{4030}=\dfrac{x}{2015}\)
\(\dfrac{x+y}{2014}=\dfrac{x-y}{2016}=\dfrac{x+y-x+y}{2014-2016}=\dfrac{2y}{-2}=\dfrac{y}{-1}\)
Nên: \(\dfrac{x}{2015}=\dfrac{y}{-1}=\dfrac{xy}{2015}\)
Xét: \(\left\{{}\begin{matrix}\dfrac{x}{2015}=\dfrac{xy}{2015}\Leftrightarrow2015x=2015xy\Leftrightarrow y=1\\\dfrac{y}{-1}=\dfrac{xy}{2015}\Leftrightarrow2015y=-1xy\Leftrightarrow2015=-1x\Leftrightarrow x=-2015\end{matrix}\right.\)
2) \(VT=\left|x-6\right|+\left|x-10\right|+\left|x-2022\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(VT=\left|x-6\right|+\left|2022-x\right|+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(VT\ge\left|x-6+2022-x\right|+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(VT\ge2016+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\ge2016=VP\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}6\le x\le2022\\x=10\\y=2014\\z=2015\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=2014\\z=2015\end{matrix}\right.\)