\(\left\{{}\begin{matrix}\left(1-c;1-d\right).\left(-c;1-d\right)=0\\\left(1-d\right)^2+\left(1-d\right)^2=\left(-c\right)^2+\left(1-d\right)^2\end{matrix}\right.\)
Làm tới này làm s tính đc tọa độ (c,d) ạ . ai đó giúp em với ~~ cảm ơn nhìu ạ !!
a)\(\left\{{}\begin{matrix}mx+y=3m-1\\x+my=m+1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x-my=1+m^2\\mx+y=1+m^2\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}2x-y=3+2m\\mx+y=\left(m+1\right)^2\end{matrix}\right.\)
Giải hệ phương trình
a)\(\left\{{}\begin{matrix}6x^2-3xy+x=1-y\\x^2+y^2=1\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}\left|x+1\right|+\left|y-1\right|=5\\\left|x+1\right|-4y+4=0\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}2x^2-2x+xy-y=0\\x^2-3xy+4=0\end{matrix}\right.\)
a \(\Leftrightarrow\left\{{}\begin{matrix}6x^2-3xy+x=1-y\left(1\right)\\x^2+y^2=1\left(2\right)\end{matrix}\right.\) Từ (1) \(\Rightarrow6x^2-3xy+x-1+y=0\)
\(\Leftrightarrow\left(6x^2+x-1\right)-\left(3xy-y\right)=0\) \(\Leftrightarrow\left(6x^2+3x-2x-1\right)+y\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2x+1\right)+y\left(3x-1\right)=0\) \(\Leftrightarrow\left(3x-1\right)\left(2x+1+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\2x+y=-1\end{matrix}\right.\)
*Nếu 3x-1=0⇔x=\(\dfrac{1}{3}\) Thay vào (2) ta được:
\(\dfrac{1}{9}+y^2=1\Leftrightarrow y^2=\dfrac{8}{9}\Leftrightarrow y=\dfrac{\pm2\sqrt{2}}{3}\)
*Nếu 2x+y=-1\(\Leftrightarrow y=-1-2x\) Thay vào (2) ta được :
\(\Rightarrow x^2+\left(-2x-1\right)^2=1\Leftrightarrow x^2+4x^2+4x+1=1\Leftrightarrow5x^2+4x=0\Leftrightarrow x\left(5x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-4}{5}\end{matrix}\right.\)
.Nếu x=0⇒y=0
.Nếu x=\(\dfrac{-4}{5}\) \(\Rightarrow y=-1+\dfrac{4}{5}=-\dfrac{1}{5}\) Vậy...
Câu b)
\(\left\{{}\begin{matrix}2x^2-2x+xy-y=0\\x^2-3xy+4=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x\left(x-1\right)+y\left(x-1\right)\\x^2-3xy+4=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}\left(x-1\right)\left(2x+y\right)=0\\x^2-3xy+4=0\left(2\right)\end{matrix}\right.\)
Để (x-1)(2x+y) = 0 thì: \(\left[{}\begin{matrix}x-1=0\\2x+y=0\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x=1\\2x+y=0\end{matrix}\right.\)
Thay x=1 vào PT (2) ta có:
(2) ⇔12-3.1.y+4=0
⇔1-3y +4=0
⇔-3y+5=0
⇔y=\(\dfrac{5}{3}\)
Vậy HPT có nghiệm (x:y) = (1;\(\dfrac{5}{3}\))
b\(\left\{{}\begin{matrix}2x^2-2x+xy-y=0\left(1\right)\\x^2-3xy+4=0\left(2\right)\end{matrix}\right.\)
Từ (1) \(\Rightarrow2x\left(x-1\right)+y\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+y\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+y=0\end{matrix}\right.\)
*Nếu x-1=0⇔x=1 Thay vào (2) ta được: \(1-3y+4=0\Leftrightarrow3y=5\Leftrightarrow y=\dfrac{5}{3}\)
*Nếu 2x+y=0\(\Leftrightarrow y=-2x\) Thay vào (2) ta được:
\(\Rightarrow x^2+6x^2+4=0\Leftrightarrow7x^2=-4\) Vô lí ⇒ Trường hợp này ko có x,y (L)
Vậy...
1.) liệt kê các tập hợp sau :
a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N|}2\le x\le10\left\{\right\}\)
b.) B =\(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in Z|9\le x^2\le36\left\{\right\}}\)
c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N}^{\cdot}|3\le n^2\le30\left\{\right\}\)
B.) B là tập hợp các số thực x thỏa x2 - 4x +2 = 0
d.) D = \(\left\{{}\begin{matrix}\\\end{matrix}\right.\frac{1}{n+1}}|n\in N;n\le4\left\{\right\}\)
e.) E = \(\left\{{}\begin{matrix}\\\end{matrix}\right.2n^2-1|n\in N^{\cdot}},n\le7\left\{\right\}\)
2.) chỉ ra tính chất đặc trưng :
a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;1;2;3;4\left\{\right\}}\)
b.) B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;4;8;12;16\left\{\right\}}\)
c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;4;9;16;25;36\left\{\right\}}\)
3.) Trong các tập hợp sau , tập hợp nào là con tập nào :
a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.1;2;3\left\{\right\}}\)
B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N^{\cdot}|n\le4\left\{\right\}}\)
b.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N^{\cdot}}|n\le5\left\{\right\}\)
B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in Z|0\le|n|\le5\left\{\right\}}\)
Giải hệ
a) \(\left\{{}\begin{matrix}2x^2-5xy-y^2=1\\y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^3+1=2\left(x^2-x+y\right)\\y^3+1=2\left(y^2-y+x\right)\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^2-2y^2=1\\2y^2-3z^2=1\\xy+yz+zx=1\end{matrix}\right.\left(x,y,z\in R\right)}\)
a) \(\left\{{}\begin{matrix}2x^2-5xy-y^2=1\\y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=1\end{matrix}\right.\)
ĐKXĐ:...
\(\Rightarrow y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=2x^2-5xy-y^2\)
Từ giả thiết dễ thấy \(y\ne0\), chia cả 2 vế cho \(y^2\) ta được:
\(\dfrac{\sqrt{xy-2y^2}+\sqrt{4y^2-xy}}{y}=\dfrac{2x^2-5xy-y^2}{y^2}\)
\(\Leftrightarrow\sqrt{\dfrac{xy-2y^2}{y^2}}+\sqrt{\dfrac{4y^2-xy}{y^2}}=2\left(\dfrac{x}{y}\right)^2-\dfrac{5x}{y}-1\)
\(\Leftrightarrow\sqrt{\dfrac{x}{y}-2}+\sqrt{4-\dfrac{x}{y}}=2\left(\dfrac{x}{y}\right)^2-5\dfrac{x}{y}-1\)
Đặt \(\dfrac{x}{y}=t\) \(\left(2\le t\le4\right)\)
\(\Leftrightarrow\sqrt{t-2}+\sqrt{4-t}=2t^2-5t-1\)
\(\Leftrightarrow\sqrt{t-2}-1+\sqrt{4-t}-1=2t^2-5t-3\)
\(\Leftrightarrow\left(t-3\right)\left(2t+1\right)=\dfrac{t-3}{\sqrt{t-2}+1}+\dfrac{3-t}{\sqrt{4-t}+1}\)
\(\Leftrightarrow\left(t-3\right)\left(2t+1-\dfrac{1}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}\right)=0\)
Xét \(2t+1-\dfrac{1}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}=2t+\dfrac{\sqrt{t-2}}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}>0\forall t\)
\(\Rightarrow t-3=0\)
\(\Leftrightarrow t=3\)
\(\Leftrightarrow\dfrac{x}{y}=3\Leftrightarrow x=3y\)
Thế vào phương trình \(\left(1\right):2\cdot9y^2-5y\cdot3y-y^2-1=0\)
\(\Leftrightarrow2y^2-1=0\)
\(\Leftrightarrow y=\dfrac{1}{\sqrt{2}}\) do \(y>0\)
\(\Leftrightarrow x=\dfrac{3}{\sqrt{2}}\)
Vậy tập nghiệm của phương trình \(\left(x;y\right)=\left(\dfrac{3}{\sqrt{2}};\dfrac{1}{\sqrt{2}}\right)\)
b) \(\left\{{}\begin{matrix}x^3+1=2\left(x^2-x+y\right)\\y^3+1=2\left(y^2-y+x\right)\end{matrix}\right.\)
Trừ theo vế 2 phương trình ta được:
\(x^3-y^3=2\left(x^2-y^2-2x+2y\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-2\left(x-y\right)\left(x+y\right)+4\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-2\left(x+y\right)+4\right)=0\)
Xét phương trình \(x^2+x\left(y-2\right)+y^2-2y+4=0\)
\(\Delta_x=\left(y-2\right)^2-4\left(y^2-2y+4\right)=-3y^2+4y-8< 0\) nên phương trình vô nghiệm.
Do đó \(x=y\)
Thế vào phương trình \(\left(1\right):x^3+1=2x^2\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)
Vậy...
giai hpt
a.\(\left\{{}\begin{matrix}x=y+4\\2x+3=0\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}2x+y=7\\3y-x=7\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}5x+y=3\\-x-\dfrac{1}{5}y=\dfrac{-3}{5}\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}3x-5y=-18\\x-5=2y\end{matrix}\right.\)
\(a) \begin{cases}x=y+4\\2x+3=0\end{cases}\Leftrightarrow\begin{cases}x = y + 4\\2x = -3\end{cases}\Leftrightarrow\begin{cases}\dfrac{-3}{2} = y + 4\\x = \dfrac{-3}{2}\end{cases}\Leftrightarrow\begin{cases}y = \dfrac{-11}{2}\\x = \dfrac{-3}{2}\end{cases}\\b) \begin{cases}2x + y = 7\\3y - x = 7\end{cases}\Leftrightarrow\begin{cases}2x + y = 7\\6y - 2x = 14\end{cases}\Leftrightarrow\begin{cases}2x + y = 7\\7y = 21\end{cases}\Leftrightarrow\begin{cases}2x + 3 = 7\\y = 3\end{cases}\Leftrightarrow\begin{cases}x=2\\y=3\end{cases}\\ c) \begin{cases} 5x + y = 3 \\ -x - \dfrac{1}{5}y=\dfrac{-3}{5} \end{cases} \Leftrightarrow \begin{cases} 5x + y = 3 \\ 5x + y = 3 \end{cases} (luôn\ đúng) \Leftrightarrow Phương\ trình\ vô\ số\ nghiệm \\d) \begin{cases} 3x - 5y = -18 \\ x - 5 = 2y \end{cases} \Leftrightarrow \begin{cases} 3x - 5y = -18 \\ 3x - 6y = 15 \end{cases} \Leftrightarrow \begin{cases} x - 5 = 2.(-33)\\ y = -13 \end{cases} \Leftrightarrow \begin{cases}x = -61\\y=-33 \end{cases} \)
giải hệ phương trình
a
\(\left\{{}\begin{matrix}x+y=1\\x-y=-5\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}2x+2y=5\\x-2y=1\end{matrix}\right.\)
c.
\(\left\{{}\begin{matrix}2x+3y=5\\3x-2y=1\end{matrix}\right.\)
a, b và c có thể dùng phương pháp thế hoặc cộng trừ đại số
\(a,\left\{{}\begin{matrix}x=1-y\\1-y-y=-5\end{matrix}\right.=>\left\{{}\begin{matrix}x=1-y\\1-2y=-5\end{matrix}\right.=>\left\{{}\begin{matrix}x=1-y\\2y=6\end{matrix}\right.=>\left\{{}\begin{matrix}x=1-y\\y=3\end{matrix}\right.=>\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)
Kết luận hpt có 1 nghiệm duy nhất (x;y)=(-2;3)
b và c làm tương tự
a.\(\Leftrightarrow\left\{{}\begin{matrix}2x=-4\\x-y=-5\end{matrix}\right.\) ( cộng đại số bạn nhé )
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\-2-y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)
b.\(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\x-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
c.\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\9x-6y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}13x=13\\9x-6y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\9.1-6y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
a, \(\left\{{}\begin{matrix}x+y=1\\x-y=-5\end{matrix}\right.\)
\(\Leftrightarrow x+y+x-y=-4\)
\(\Leftrightarrow2x=-4\)
\(\Leftrightarrow x=-2\)
Thay \(x=-2\) vào \(x+y=1\)\(\Leftrightarrow-2+y=1\)\(\Leftrightarrow y=3\)
Vậy \(x=-2;y=3\)
Trong các suy luận sau, suy luận nào đúng. Giải thích
A. \(\left\{{}\begin{matrix}x< 1\\y< 1\end{matrix}\right.\)\(\Rightarrow xy< 1\)
B. \(\left\{{}\begin{matrix}x< 1\\y< 1\end{matrix}\right.\)\(\Rightarrow\dfrac{x}{y}< 1\)
C. \(\left\{{}\begin{matrix}0< x< 1\\y< 1\end{matrix}\right.\)\(\Rightarrow xy< 1\)
D. \(\left\{{}\begin{matrix}x< 1\\y< 1\end{matrix}\right.\) \(\Rightarrow x-y< 1\)
Bài 1: Giải hệ pt
a) \(\left\{{}\begin{matrix}x-6y=17\\5x+y=23\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}40x+3y=10\\20x-7y=5\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\dfrac{1}{3}x+\dfrac{1}{4}y-2=0\\5x-y=11\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}3x-3y=5\\5x+2y=23\end{matrix}\right.\)
Lời giải:
Phương hướng giải là bạn sử dụng phương pháp thế, biểu diễn $x$ theo $y$ qua 1 trong 2 PT, sau đó thế vô PT còn lại giải PT 1 ẩn $y$
a) \(\left\{\begin{matrix}
x-6y=17\\
5x+y=23\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x=17+6y\\
5x+y=23\end{matrix}\right.\)
\(\Rightarrow 5(17+6y)+y=23\)
\(\Leftrightarrow 31y=-62\Leftrightarrow y=-2\)
$x=17+6y=17+6(-2)=5$
Vậy $(x,y)=(5,-2)$
Các phần còn lại bạn giải tương tự
b) $(x,y)=(\frac{1}{4}, 0)$
c) $(x,y)=(3, 4)$
d) $(x,y)=(\frac{79}{21}, \frac{44}{21})$
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^2+y^2+xy=13\\x^4+y^4+x^2y^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=13\\\left(x^2+y^2\right)^2-\left(xy\right)^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=13+xy\\\left[\left(x+y\right)^2-2xy\right]^2-\left(xy\right)^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=13\\\left(13-xy\right)^2-\left(xy\right)^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=3\\\left(x+y\right)^2=16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\) hoặc x+y = -4
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=-4\\xy=3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\)
Mọi người có thể giải thích từ dấu tương đương thứ 3 xuống 4. tại sao lại như vậy k?
giải hpt:
a) \(\left\{{}\begin{matrix}4x+9y=6\\3x^2+6xy-x+3y=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(x+y+2\right)\left(2x+2y-1\right)=0\\3x^2-32y^2+5=0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}2x^2-xy+3y^2=7x+12y-1\\x-y+1=0\end{matrix}\right.\)