Tìm x,y biết rằng:
a) x/5 = y/3 và x^2-y^2=4 (x,y>0)
giúp mik với ạ
Chứng minh rằng:
a) (x+1)2>=4x
b) x2+y2+2>=2(x+y)
c) (1/x+1/y)(x+y)>=4 (với x>0; y>0)
d) x/y+y/x>=2 ( với x>0; y>0)
Giúp mình với ạ <3
a) Giả sử `(x+1)^2 >= 4x` là đúng.
Có: `(x+1)^2 >=4x <=> x^2+2x+1>=4x`
`<=>x^2+1>=2x`
`<=>x^2-2x+1>=0`
`<=> (x-1)^2>=0 forall x`.
Vậy điều giả sử là đúng.
b) `x^2+y^2+2 >=2(x+y)`
`<=> (x^2-2x+1)+(y^2-2y+1) >=0`
`<=>(x-1)^2+(y-1)^2>=0 forall x,y`
c) `(1/x+1/y)(x+y)>=4`
`<=> (x+y)/(xy) (x+y) >=4`
`<=> (x+y)^2 >= 4xy`
`<=> x^2+2xy+y^2>=4xy`
`<=> (x-y)^2>=0 forall x,y > 0`
d) `x/y+y/x>=2`
`<=> (x^2+y^2)/(xy) >=2`
`<=> x^2+y^2 >=2xy`
`<=> (x-y)^2>=0 \forall x,y>0`.
a) Xét hiệu \(\left(x+1\right)^2-4x\) = \(x^2-2x+1=\left(x-1\right)^2\ge0\)
=> \(\left(x+1\right)^2-\text{4x}\) \(\ge\) 0
=> \(\left(x+1\right)^2\ge\text{4x}\) (điều phải chứng minh)
b) xét hiệu \(x^2+y^2+2-2\left(x+y\right)\) = \(\left(x-1\right)^2+\left(y-1\right)^2\ge0\)
=> \(x^2+y^2+2-2\left(x+y\right)\ge0\)
=> \(x^2+y^2+2\ge2\left(x+y\right)\) (điều phải chứng minh)
c) Xét hiệu \(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)-4\) = \((\dfrac{x+y}{xy})\left(x+y\right)-4=\dfrac{\left(x+y\right)^2-4xy}{xy}=\dfrac{\left(x-y\right)^2}{xy}\) \(\ge0\)(vì x>0,y>0)
=>\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)\ge4\) (điều phải chứng minh)
d) Áp dụng bất đẳng thức Cau-Chy cho các số x>0;y>0 ta có
\(\dfrac{x}{y}+\dfrac{y}{x}\ge2.\left(\dfrac{xy}{yx}\right)=2\)
=> \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\) (điều phải chứng minh)
Mình làm hơi tắt mong bạn thông cảm nhé
Chúc bạn học tốt
Tìm các số nguyên x, y biết:
a) x . y = 3
b) x . (y + 1) = 5
c) (x – 2) . (y + 3) = 7
giúp mik với ạ
a,x.y=3=1x3=3x1=-1x(-3)=-3x(-1).
Vậy (x,y)=(1,3)=(3,1)=(-1,-3)=(-3,-1)
b,x.(y+1)=5=1x5=5x1=-1x(-5)=-5x(-1)
=>
x | 1 | 5 | -1 | -5 |
y+1 | 5 | 1 | -5 | -1 |
y | 4 | 0 | -6 | -2 |
Vậy (x,y)=(1,4)=(5,0)=(-1,-6)=(-1,-2).
c,(x-2)(y+3)=7=1x7=7x1=-1x(-7)=-7(-1)
=>
x-2 | 1 | 7 | -1 | -7 |
y+3 | 7 | 1 | -7 | -1 |
x | 3 | 9 | 1 | -5 |
y | 4 | -2 | -10 | -4 |
Vậy (x,y)=(3,4)=(9,-2)=(1,-10)=(-5,-4).
Tìm x, y, z biết :
(x+1) /2 = (y+2) /3 = (z+2) /4 và 3x - 2y + z = 105
x/2 = y/3 = z/4 và x^2 - y^2 + 2z^2 = 108
Giúp mik với ạ, cảm ơn!
\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\) => \(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
TỪ(1) => \(\frac{3x+3+2y+4+z+2}{6+6+4}=\frac{\left(3x+2y+z\right)+\left(3+4+2\right)}{16}\)
=\(\frac{105+9}{16}=\frac{57}{8}\)
b)tương tự câu a
a) Ta có :\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)
=> \(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}\)
Lại có 3x - 2y + z = 105
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}=\frac{3x+3-2y-4+z+2}{6-6+4}=\frac{\left(3x-2y+z\right)+3-4+2}{4}\)
\(=\frac{105+1}{4}=\frac{106}{4}=26,5\)
=> x = 52 ; y = 77,5 ; z = 104
b) Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
Đặt \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=k\Rightarrow\hept{\begin{cases}x^2=4k\\y^2=9k\\z^2=16k\end{cases}}\)
Lại có x2 - y2 + 2z2 = 108
=> 4k - 9k + 2.16k = 108
=> -5k + 32k = 108
=> 27k = 108
=> k = 4
=> x = \(\pm\)4 ; y = \(\pm\)6 ; z = \(\pm\)8
Vì \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)=> x ; y ; z cùng dấu
=> các cặp số (x;y;z) thỏa mãn bài toán là (-4;-6;-8) ; (4;6;8)
Tìm x, biết:
a, |x-1/2|+1/3=2/3
b, x/-2=y/5 và x-y=14
Giúp mik đc ko ạ???
\(a,\left|x-\dfrac{1}{2}\right|+\dfrac{1}{3}=\dfrac{2}{3}\\ \Rightarrow\left|x-\dfrac{1}{2}\right|=\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}\\ \Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{1}{3}\\x-\dfrac{1}{2}=-\dfrac{1}{3}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\\x=-\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{6}\end{matrix}\right.\\ b,\dfrac{x}{-2}=\dfrac{y}{5}=\dfrac{x-y}{-2-5}=\dfrac{14}{-7}=-2\\ \Rightarrow x=-2.\left(-2\right)=4;y=-2.5=-10\)
a)
\(\left|x-\dfrac{1}{2}\right|+\dfrac{1}{3}=\dfrac{2}{3}\\ \left|x-\dfrac{1}{2}\right|=\dfrac{1}{3}\\ \left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{1}{3}\\x-\dfrac{1}{2}=-\dfrac{1}{3}\end{matrix}\right.\\ \left[{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}\\x=-\dfrac{1}{3}+\dfrac{1}{2}\end{matrix}\right.\\ \left[{}\begin{matrix}x=\dfrac{5}{6}\\x=\dfrac{1}{6}\end{matrix}\right.\)
b)
\(\dfrac{x}{-2}=\dfrac{y}{5}\)
mà `x-y=14` nên áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x}{-2}=\dfrac{y}{5}=\dfrac{x-y}{-2-5}=\dfrac{14}{-7}=-2\\ =>\left\{{}\begin{matrix}x=-2\cdot\left(-2\right)=4\\y=-2\cdot5=-10\end{matrix}\right.\)
Câu 4:Tìm các số nguyên x,y biết:
a)x/2 = -5/y b)3/x = y/4 (trong đó x > y > 0) c)3/x-1 = y+1 d)x+2/5 = 1/y
Giúp mình với ạ!!!
a: x/2=-5/y
=>xy=-10
=>\(\left(x,y\right)\in\left\{\left(1;-10\right);\left(-10;1\right);\left(-1;10\right);\left(10;-1\right);\left(2;-5\right);\left(-5;2\right);\left(-2;5\right);\left(5;-2\right)\right\}\)
b: =>xy=12
mà x>y>0
nên \(\left(x,y\right)\in\left\{\left(12;1\right);\left(6;2\right);\left(4;3\right)\right\}\)
c: =>(x-1)(y+1)=3
=>\(\left(x-1;y+1\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;2\right);\left(4;0\right);\left(0;-4\right);\left(-2;-2\right)\right\}\)
d: =>y(x+2)=5
=>\(\left(x+2;y\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-1;5\right);\left(3;1\right);\left(-3;-5\right);\left(-7;-1\right)\right\}\)
Tìm hai số x, y biết rằng:
a) x + y = 30 và \(\dfrac{x}{2}\)= \(\dfrac{y}{3}\)
b) x – y = −21 và \(\dfrac{x}{5}\)= \(\dfrac{y}{{ - 2}}\)
a) \(x + y = 30;\dfrac{x}{2} = \dfrac{y}{3}\) áp dụng tính chất của tỉ lệ thức ra có :
\( \Rightarrow \dfrac{{x + y}}{{2 + 3}} = \dfrac{x}{2}\)
\( \Rightarrow \dfrac{{30}}{5} = \dfrac{x}{2}\)
\( \Rightarrow 30.2 = x.5\)
\(\begin{array}{l} \Rightarrow 60:5 = x\\ \Rightarrow x = 12\\ \Rightarrow 14 + y = 30\\ \Rightarrow y = 18\end{array}\) ( thay x vừa tìm được = 12 vào x + y = 30 để tìm ra y )
Vậy x = 12 y = 18
b) Ta có : \(\dfrac{x}{5} = \dfrac{y}{{ - 2}}\)= \(\dfrac{{x - y}}{{5 + 2}}\)( áp dụng tính chất tỉ lệ thức ) (1)
Mà theo đề bài x – y = -21
Thay -21 vào (1) ta có : \(\dfrac{{ - 21}}{7} = - 3\) \( = \dfrac{x}{5}\)
\( \Rightarrow \)x = (-3).5
\( \Rightarrow \)x = -15
Thay x bằng -15 ta có -15 – y = -21
\( \Rightarrow \)y = -15 + 21
\( \Rightarrow \)y = 6
Vậy x = -15 và y = 6
tính giá trị của biểu thức sau:A=9x5 - xy4 - 18x4 y +2y5 /3x3y2+xy4-6x2y3-2y5,biết x><0,y><0,x><2y và x/y=2/3
giúp mik với ạ!!
Tìm x,y thuộc Z biết 3 x phần 5 y 3 5 và x y 6b,x 4 y 3 4 3 và x-y=5
giúp mik với mik đang cần gấp lắm nha
Tìm x,y thuôc Z cho biết
a, x/5=3/y với 0<x<y
b, 2/x=y/-7 và x > 0
Giúp mình với ạ
Tìm x,y biết rằng:
(x-2)^2+|y^2-4|=0
giúp mik với
Lời giải:
Ta có: $(x-2)^2\geq 0$ với mọi $x$
$|y^2-4|\geq 0$ theo tính chất trị tuyệt đối
Do đó $(x-2)^2+|y^2-4|\geq 0$. Để tổng $(x-2)^2+|y^2-4|=0$ thì:
$(x-2)^2=|y^2-4|=0$
$\Rightarrow x=2; y=\pm 2$
Ta có (x - 2)^2 + |y^2 - 4| = 0 (1)
Mà \(\left(x-2\right)^2\ge0,\left|y^2-4\right|\ge0\) với mọi x,y nên (1) xảy ra <=>
(x - 2)^2 = |y^2 - 4| = 0 <=> x - 2 = y^2 - 4 = 0 <=> x = 2 và y = 2,-2
Vậy...