\(\sqrt{16}+\sqrt{9}+\sqrt{16+9}\)
giải bài trên
\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
Giải phương trình !
Giải phương trình :
\(\sqrt{16-x}+\sqrt{9+x}=7\)
\(\Leftrightarrow16-x+2\sqrt{\left(16-x\right)\left(9+x\right)}+9+x=49\)
\(\Leftrightarrow2\sqrt{\left(16-x\right)\left(9+x\right)}=24\)
\(\Leftrightarrow\left(16-x\right)\left(9+x\right)=144\)
\(\Leftrightarrow7x-x^2=0\)
\(\Leftrightarrow x\left(7-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=7\end{cases}}\)
đặt ĐK cửa x
Do 2 vế không âm nên bình phương hai vế ta có
25 + 2\(\sqrt{\left(16-x\right)\left(9+x\right)}=49\)
\(\sqrt{\left(16-x\right)\left(9+x\right)}=12\)
Do hai vế không âm nên bình phương hai vế ta có
(16-x)(9+x) = 144
144 + 7x - \(x^2=144\)
\(x^2-7x=0\)
X = 0; 7
ĐK: \(-9\le x\le16\)
\(\sqrt{16-x}=a;\sqrt{9+x}=b\ge0\Rightarrow a^2+b^2=25\)
Kết hợp đề bài ta có hệ:
\(\hept{\begin{cases}a^2+b^2=25\\a+b=7\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+b^2=25\\\left(a+b\right)^2=49\end{cases}}\)
Nhân chéo hai vế của hai pt cho nhau ta được: \(49\left(a^2+b^2\right)=25\left(a+b\right)^2\Leftrightarrow2\left(3a-4b\right)\left(4a-3b\right)=0\)
...
Tại sao \(\sqrt{16+9}\ne\sqrt{16}+\sqrt{9}\)
\(\sqrt{16}-\sqrt{9}+\sqrt{16+9}-\sqrt{\left(-2\right)^2}\)giup minh gap
\(\sqrt{16}-\sqrt{9}+\sqrt{16+9}-\sqrt{\left(-2\right)^2}\)
\(=4-3+5-2=4\)
Chứng minh rằng
\(\frac{\sqrt[2016]{9}+\sqrt[2016]{16}+\sqrt[2016]{25}}{\sqrt[2016]{12}+\sqrt[2016]{15}+\sqrt[2016]{20}}>\frac{\sqrt[2017]{12}+\sqrt[2017]{15}+\sqrt[2017]{20}}{\sqrt[2017]{9}+\sqrt[2017]{16}+\sqrt[2017]{25}}\)
e,\(\sqrt{\dfrac{9}{169}}\)
f,\(\sqrt{1\dfrac{9}{16}}\)
g,\(\dfrac{\sqrt{2300}}{\sqrt{23}}\)
h,\(\dfrac{\sqrt{12,5}}{\sqrt{0,5}}\)
\(e,\sqrt{\dfrac{9}{169}}=\dfrac{\sqrt{9}}{\sqrt{169}}=\dfrac{\sqrt{3^2}}{\sqrt{13^2}}=\dfrac{3}{13}\)
\(f,\sqrt{1\dfrac{9}{16}}=\sqrt{\dfrac{25}{16}}=\dfrac{\sqrt{25}}{\sqrt{16}}=\dfrac{\sqrt{5^2}}{\sqrt{4^2}}=\dfrac{5}{4}\)
\(g,\dfrac{\sqrt{2300}}{\sqrt{23}}=\sqrt{\dfrac{2300}{23}}=\sqrt{100}=\sqrt{10^2}=10\)
\(h,\dfrac{\sqrt{12,5}}{\sqrt{0,5}}=\sqrt{\dfrac{12,5}{0,5}}=\sqrt{25}=\sqrt{5^2}=5\)
e, \(\sqrt{\dfrac{9}{169}}\)
\(=\sqrt{\dfrac{3^2}{13^2}}\)
\(=\dfrac{3}{13}\)
f, \(\sqrt{1\dfrac{9}{16}}\)
\(=\sqrt{\dfrac{25}{16}}\)
\(=\sqrt{\dfrac{5^2}{4^2}}\)
\(=\dfrac{5}{4}\)
g, \(\dfrac{\sqrt{2300}}{\sqrt{23}}\)
\(=\dfrac{10\sqrt{23}}{\sqrt{23}}\)
\(=10\)
h, \(\dfrac{\sqrt{12,5}}{\sqrt{0,5}}\)
\(=\dfrac{\dfrac{5\sqrt{2}}{2}}{\dfrac{\sqrt{2}}{2}}\)
\(=\dfrac{\dfrac{5\sqrt{2}}{2}\cdot2}{\sqrt{2}}\)
\(=\dfrac{5\sqrt{2}}{\sqrt{2}}=5\)
\(\left(\sqrt{1\frac{9}{16}}-\sqrt{\frac{9}{16}}\right)\)
\(\left(\sqrt{1\frac{9}{16}}-\sqrt{\frac{9}{16}}\right)\)
\(=\left(\sqrt{\frac{25}{16}}-\sqrt{\frac{9}{16}}\right)\)
\(=\left(\sqrt{\left(\frac{5}{4}\right)^2}-\sqrt{\left(\frac{3}{4}\right)^2}\right)\)
\(=\left(\frac{5}{4}-\frac{3}{4}\right)=\frac{5-3}{4}=\frac{2}{4}=\frac{1}{2}\)
...Vậy ...................
\(\sqrt{1\frac{9}{16}}-\sqrt{\frac{9}{16}}=\sqrt{\frac{25}{16}}-\sqrt{\frac{9}{16}}\)
\(=\sqrt{\left(\frac{5}{4}\right)^2}-\sqrt{\left(\frac{3}{4}\right)^2}=\frac{5}{4}-\frac{3}{4}=\frac{2}{4}=\frac{1}{2}\)
#
\(\sqrt{1\frac{9}{16}}-\sqrt{\frac{9}{16}}\)
\(=\sqrt{\frac{25}{16}}-\sqrt{\frac{9}{16}}\)
\(=\frac{5}{4}-\frac{3}{4}=\frac{2}{4}=\frac{1}{2}\)
5\(\sqrt{16}\)-4\(\sqrt{9}\)+\(\sqrt{25}\)-0,3\(\sqrt{400}\)
(\(\sqrt{\dfrac{9}{4}}\) - \(\sqrt{9}\) ) . \(\sqrt{1\dfrac{9}{16}}\)
Tính nhanh giúp mik nha, mik cần gấp
\(=\left(\dfrac{3}{2}-3\right).\sqrt{\dfrac{25}{16}}=\left(-\dfrac{3}{2}\right).\dfrac{5}{4}=-\dfrac{15}{8}\)