Cho mặt phẳng tọa độ Oxy
a) Xác định các điểm A(2;1); B(-2;-1); C(-1;2)
b) Chứng minh CO vuông góc với AB
Chứng minh tam giác ABC là tam giác vuông
Bạn nào học giỏi toán giải giúp mik câu b nhak :((
Trên mặt phẳng tọa độ Oxy, cho điểm A(2; 4). Hãy xác định vị trí tương đối của đường tròn (A; 2) và các trục tọa độ.
Do A(2; 4) nên A cách trục Ox 2 đơn vị, cách trục Oy 4 đơn vị
Khi đó đường tròn (A; 2) tiếp xúc với trục Ox và không giao nhau với trục Oy
Trên mặt phẳng tọa độ Oxy, cho điểm A( 5; 6). Xác định vị trí tương đối của đường tròn (A; 5) với các trục tọa độ?
A. Đường tròn tiếp xúc trục Oy.
B. Đường tròn tiếp xúc với trục Ox.
C. Đường tròn không cắt trục Ox.
D. Đường tròn không cắt trục Oy.
Đáp án A
Ta có khoảng cách từ A đến trục Ox bằng 6 > R.
Đường tròn (A; R) cắt trục Ox tại 2 điểm phân biệt .
Khoảng cách từ A đến trục Oy bằng 5 = R..
Do đó, đường tròn (A; R) tiếp xúc với trục Oy.
Trên mặt phẳng tọa độ Oxy, cho điểm A(3; 4). Hãy xác định vị trí tương đối của đường tròn (A; 3) và các trục tọa độ
Kẻ AH ⊥ Ox, AK ⊥ Oy.
Vì AH = 4 > R = 3 nên đường tròn tâm (A) và trục hoành không giao nhau.
Vì AK = 3 = R nên đường tròn (A) và trục tung tiếp xúc nhau.
Trên mặt phẳng tọa độ Oxy, cho điểm A(3; 4). Hãy xác định vị trí tương đối của đường tròn (A; 3) và các trục tọa độ.
Kẻ AH ⊥ Ox, AK ⊥ Oy.
Vì AH = 4 > R = 3 nên đường tròn tâm (A) và trục hoành không giao nhau.
Vì AK = 3 = R nên đường tròn (A) và trục tung tiếp xúc nhau.
Trên mặt phẳng tọa độ Oxy, cho điểm A(3;4). Hãy xác định vị trí tương đối của đường tròn (A; 3) và các trục tọa độ.
- Khoảng cách từ tâm A đến trục Ox là 4.
Vậy d>R, do đó đường tròn và trục Ox không giao nhau.
- Khoảng cách từ tâm A tới trục Oy là 3.
Vậy d=R, do đó đường tròn và trục Oy tiếp xúc nhau.
trong mặt phẳng với hệ tọa độ Oxy, cho hình thang cân ABCD ( AB//CD) . biết tọa độ các điểm A(-8;2) B(-4;6)D(-6-8) xác định tọa độ đỉnh C
\(\overrightarrow{AB}=\left(-4;4\right)=-4\left(1;-1\right)\)
\(\Rightarrow\) Phương trình CD song song AB đi qua D có dạng:
\(1\left(x+6\right)+1\left(y+8\right)=0\Leftrightarrow x+y+14=0\)
Gọi M là trung điểm AB \(\Rightarrow M\left(-6;4\right)\)
Phương trình đường thẳng d qua M và vuông góc AB có dạng:
\(1\left(x+6\right)-1\left(y-4\right)=0\Leftrightarrow x-y+10=0\)
Gọi N là giao điểm CD và d \(\Rightarrow\) N là trung điểm CD do ABCD là hình thang cân
Tọa độ N là nghiệm: \(\left\{{}\begin{matrix}x+y+14=0\\x-y+10=0\end{matrix}\right.\) \(\Rightarrow N\left(-12;-2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_C=2x_N-x_D=...\\y_C=2y_N-y_D=...\end{matrix}\right.\)
Trên mặt phẳng tọa độ Oxy, cho điểm A(3;4). Hãy xác định vị trí tương đối của đường tròn (A;3) và các trục tọa độ.
- Khoảng cách từ tâm A đến trục Ox là 4.
Vậy d>R, do đó đường tròn và trục Ox không giao nhau.
- Khoảng cách từ tâm A tới trục Oy là 3.
Vậy d=R, do đó đường tròn và trục Oy tiếp xúc nhau.
Trên mặt phẳng tọa độ Oxy, cho điểm A(3;4). Hãy xác định vị trí tương đối của đường tròn (A;3) và các trục tọa độ.
giup em nhe
Trong mặt phẳng Oxy cho hai điểm A ( 2 ; 3 ) , I ( 1 ; - 2 ) . Xác định tọa độ điểm B để I là trung điểm của AB.
A . ( 0 ; - 7 ) .
B . ( 3 2 ; 1 2 ) .
C. (1;2).
D . ( - 2 ; 1 ) .
Trên mặt phẳng tọa độ Oxy, cho điểm B(2; 4). Hãy xác định vị trí tương đối của đường tròn (B; 3) và các trục tọa độ
(B) Cắt Oy tại hai điểm phân biệt và (B) không cắt Ox