Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Ngân
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2021 lúc 11:18

a: Xét ΔABD và ΔACD có

AB=AC

AD chung

BD=CD

Do đó: ΔABD=ΔACD

Buì Đức Quân
Xem chi tiết
Trần Hà trang
4 tháng 5 2019 lúc 18:05

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

Trần Hà trang
4 tháng 5 2019 lúc 18:08

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

Nguyễn Lê Phước Thịnh
27 tháng 8 2022 lúc 13:11

Câu 4: 

a: Xét ΔABD vuông tại B và ΔAED vuông tại E có

AD chung

góc BAD=góc EAD

Do đó: ΔBAD=ΔEAD
b: Ta có: AB=AE

DB=DE

Do đó: AD là đường trung trực của BE

c: Xét ΔBDF vuông tại B và ΔEDC vuông tại E có

DB=DE

góc BDF=góc EDC

Do đó: ΔBDF=ΔEDC

Suy ra: BF=EC

Nguyễn Bảo Trân
Xem chi tiết
Ngọc Thái
Xem chi tiết
Hoàng Thị Ngọc Anh
26 tháng 12 2016 lúc 22:06

A B C D E

a) Xét ΔABD và ΔACD có:

AB = AC (GT)

AD chung.

BD = CD (suy từ gt)

=> ΔABD = ΔACD (c.c.c).

b) Vì ΔABD = ΔACD nên \(\widehat{ADB}\) = \(\widehat{ADC}\) ( 2 góc t ư)

\(\widehat{ADB}\) + \(\widehat{ADC}\) = 180 độ(kề bù).

=> \(\widehat{ADB}\) = \(\widehat{ADC}\) = 90 độ.

Do đó AD \(\perp\) BC.

c) Xét ΔADB và ΔEDC có:

AD = ED (gt)

\(\widehat{ADB}\) = \(\widehat{EDC}\) (đối đỉnh)

DB = DC (suy từ gt)

=> ΔADB = ΔEDC (c.g.c)

=> \(\widehat{BAD}\) = \(\widehat{CED}\) ( 2 góc t ư )

mà 2 góc này ở vị trí so le trong nên CE // AB.

Aki Tsuki
26 tháng 12 2016 lúc 22:14

Ta có hình vẽ sau:

B A C D E

a/ Xét ΔABD và ΔACD có:

AD: Cạnh chung

AB = AC (gt)

BD = CD (gt)

=> ΔABD = ΔACD (c - c - c)(đpcm)

b/ Vì ΔABD = ΔACD (ý a)

=> \(\widehat{ADB}=\widehat{ADC}\) (2 cạnh tương ứng)

\(\widehat{ADB}+\widehat{ADC}=180^o\) (kề bù)

=> \(\widehat{ADB}=\widehat{ADC}=\frac{180^o}{2}=90^o\)

=> \(AD\perp BC\left(đpcm\right)\)

c/ Xét ΔABD và ΔECD có:

AD = ED (gt)

\(\widehat{ADB}=\widehat{EDC}\) (đối đỉnh)

BD = CD (gt)

=> ΔABD = ΔECD (c - g - c)

=> \(\widehat{BAD}=\widehat{CED}\) (2 góc tương ứng)

mà 2 góc này lại ở vị trí so le trong nên:

=> CE // AB (đpcm)

Nguyễn Thị Lan Chi
28 tháng 12 2016 lúc 19:55

a) xet tam giac ADB va tam giac ADC,co:

AB=AC(gt);BD=DC(gt);AD:canh chung

tam giac ADB=DAC( 2 goc tuong ung)

Tuấn Trương Quốc
Xem chi tiết
Football TeamYT
Xem chi tiết
Nguyễn Hoàng Minh
6 tháng 1 2022 lúc 8:50

Bài 1:

undefined

Bài 2:

undefined

Mai Ngọc Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 4 2023 lúc 13:02

a: Xet ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>góc BED=90 độ và AD=DE

AD=DE
DE<DC
=>AD<DC

Xem chi tiết
Đỗ Khánh Linh
1 tháng 5 2020 lúc 20:59

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

Khách vãng lai đã xóa
Đỗ Khánh Linh
1 tháng 5 2020 lúc 21:24

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

Khách vãng lai đã xóa
Đỗ Khánh Linh
1 tháng 5 2020 lúc 21:33

câu 6; 

 Xét \(\Delta ABM\)và \(\Delta ECM\)

BM =MC ( M là trung điểm của BC)

MA =ME

\(\widehat{AMB}=\widehat{CME}\)( đối đỉnh )

=> \(\Delta ABM\)\(\Delta ECM\)(cgc)

=> AB =CE và \(\widehat{MAB}=\widehat{MEC}\)

có AB < AC => CE < AC

Xét \(\Delta CAE\) có CA>CE => \(\widehat{CAE}>\widehat{CEA}\)

có \(\widehat{MAB}=\widehat{CEA}\)=> đpcm

Khách vãng lai đã xóa
Phương Dương
Xem chi tiết
Phương Dương
7 tháng 2 2021 lúc 19:35

giúp tui với!

Khách vãng lai đã xóa