a) Xét ΔABD và ΔACD có:
AB = AC (GT)
AD chung.
BD = CD (suy từ gt)
=> ΔABD = ΔACD (c.c.c).
b) Vì ΔABD = ΔACD nên \(\widehat{ADB}\) = \(\widehat{ADC}\) ( 2 góc t ư)
mà \(\widehat{ADB}\) + \(\widehat{ADC}\) = 180 độ(kề bù).
=> \(\widehat{ADB}\) = \(\widehat{ADC}\) = 90 độ.
Do đó AD \(\perp\) BC.
c) Xét ΔADB và ΔEDC có:
AD = ED (gt)
\(\widehat{ADB}\) = \(\widehat{EDC}\) (đối đỉnh)
DB = DC (suy từ gt)
=> ΔADB = ΔEDC (c.g.c)
=> \(\widehat{BAD}\) = \(\widehat{CED}\) ( 2 góc t ư )
mà 2 góc này ở vị trí so le trong nên CE // AB.
Ta có hình vẽ sau:
a/ Xét ΔABD và ΔACD có:
AD: Cạnh chung
AB = AC (gt)
BD = CD (gt)
=> ΔABD = ΔACD (c - c - c)(đpcm)
b/ Vì ΔABD = ΔACD (ý a)
=> \(\widehat{ADB}=\widehat{ADC}\) (2 cạnh tương ứng)
mà \(\widehat{ADB}+\widehat{ADC}=180^o\) (kề bù)
=> \(\widehat{ADB}=\widehat{ADC}=\frac{180^o}{2}=90^o\)
=> \(AD\perp BC\left(đpcm\right)\)
c/ Xét ΔABD và ΔECD có:
AD = ED (gt)
\(\widehat{ADB}=\widehat{EDC}\) (đối đỉnh)
BD = CD (gt)
=> ΔABD = ΔECD (c - g - c)
=> \(\widehat{BAD}=\widehat{CED}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên:
=> CE // AB (đpcm)
a) xet tam giac ADB va tam giac ADC,co:
AB=AC(gt);BD=DC(gt);AD:canh chung
tam giac ADB=DAC( 2 goc tuong ung)