Tìm giá trị lớn nhất của biểu thức
A = x - 2\(\sqrt{3-x}\)
Bài 1: Tìm giá trị nhỏ nhất của các biểu thức
a ) A= x2 – 2x+5
b) B= x2 –x +1
c) C= ( x -1). ( x +2). ( x+3). ( x+6)
d) D= x2 + 5y2 – 2xy+ 4y+3
Bài 2: Tìm giá trị lớn nhất của các biểu thức sau:
a) A= -x2 – 4x – 2
b) B= -2x2 – 3x +5
c) C= ( 2- x). ( x +4)
d) D= -8x2 + 4xy - y2 +3
Bài 3 : Chứng minh rằng các giá trị của các biểu thức sau luôn dương với mọi giá trị của biến
a) A= 25x – 20x+7
b) B= 9x2 – 6xy + 2y2 +1
c) E= x2 – 2x + y2 + 4y+6
d) D= x2 – 2x +2
Giúp mình nha. Cần gấp ạ <Chi tiết nha>
Bài 3:
a) Ta có: \(A=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)
d) Ta có: \(D=x^2-2x+2\)
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)
Bài 1:
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
cho biểu thức
A=(\(\dfrac{x\sqrt{x}-x}{x-1}+\dfrac{4\sqrt{x}}{x+\sqrt{x}}\)) : \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\) ( với \(x\ge0,x\ne1\) )
a, rút gọn
b, tìm giá trị nhỏ nhất của biểu thức A
Tìm giá trị nhỏ nhất của biểu thức
a) \(A=\sqrt{x-2}+\sqrt{4-x}\)
b) \(y=\dfrac{4x^4-3x^2+9}{x^2},x\ne0\)
c) \(P=\dfrac{x}{4}+\dfrac{1}{x-1}\) với x>1
\(A=\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}=\sqrt{2}\)
\(A_{min}=\sqrt{2}\) khi \(\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
\(y=4x^2+\dfrac{9}{x^2}-3\ge2\sqrt{\dfrac{36x^2}{x^2}}-3=9\)
\(y_{min}=9\) khi \(x^2=\dfrac{3}{2}\)
\(P=\dfrac{x-1}{4}+\dfrac{1}{x-1}+\dfrac{1}{4}\ge2\sqrt{\dfrac{x-1}{4\left(x-1\right)}}+\dfrac{1}{4}=\dfrac{5}{4}\)
\(P_{min}=\dfrac{5}{4}\) khi \(x=\dfrac{3}{2}\)
Bài 1: Tìm giá trị nhỏ nhất của biểu thức
a, M= x2-10x+3
b, N= x2-x+2
c, P=3x2-12x
Bài 2: Tìm giá trị nhỏ nhất của biểu thức
a, M= 2x2-4x+3
b, N= x2-4x+5+y2+2y2
MONG MN GIÚP ĐỠ :3
Bài 1:
a: \(M=x^2-10x+3\)
\(=x^2-10x+25-22\)
\(=\left(x^2-10x+25\right)-22\)
\(=\left(x-5\right)^2-22>=-22\forall x\)
Dấu '=' xảy ra khi x-5=0
=>x=5
b: \(N=x^2-x+2\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi x-1/2=0
=>x=1/2
c: \(P=3x^2-12x\)
\(=3\left(x^2-4x\right)\)
\(=3\left(x^2-4x+4-4\right)\)
\(=3\left(x-2\right)^2-12>=-12\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
Bài 1:
Ta có: \(D=\sqrt{16x^4}-2x^2+1\)
\(=4x^2-2x^2+1\)
\(=2x^2+1\)
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))
Cho 2 biểu thức
A= \(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) và B = \(\dfrac{3}{\sqrt{x}-1}\) - \(\dfrac{\sqrt{x}+5}{x-1}\) với x ≥ 0, x ≠ 1
a, CM B= \(\dfrac{2}{\sqrt{x}+1}\)
b, Tìm tất cả giá trị của x để biểu thức P=2AB + \(\sqrt{x}\) MIN
Lời giải:
a. \(B=\frac{3(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{\sqrt{x}+5}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{3(\sqrt{x}+1)-(\sqrt{x}+5)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2}{\sqrt{x}+1}\)
b.
\(P=2AB+\sqrt{x}=2.\frac{\sqrt{x}+1}{\sqrt{x}+2}.\frac{2}{\sqrt{x}+1}+\sqrt{x}=\frac{4}{\sqrt{x}+2}+\sqrt{x}\)
Áp dụng BĐT Cô-si:
$P=\frac{4}{\sqrt{x}+2}+(\sqrt{x}+2)-2\geq 2\sqrt{4}-2=2$
Vậy $P_{\min}=2$ khi $\sqrt{x}+2=2\Leftrightarrow x=0$
Cho biểu thức
A= \(\dfrac{2}{\sqrt{x}+4}-\dfrac{3}{\sqrt{x}-4}-\dfrac{2\sqrt{x}+16}{16-x}\:\:\:\left(x\ge0,x\ne16\right)\)
a) Rút gọn
b) Tìm giá trị A khi x = \(4-2\sqrt{3}\)
Lời giải:
a.
\(A=\frac{2(\sqrt{x}-4)-3(\sqrt{x}+4)}{(\sqrt{x}-4)(\sqrt{x}+4)}+\frac{2\sqrt{x}+16}{(\sqrt{x}-4)(\sqrt{x}+4)}=\frac{-\sqrt{x}-20}{(\sqrt{x}-4)(\sqrt{x}+4)}+\frac{2\sqrt{x}+16}{(\sqrt{x}-4)(\sqrt{x}+4)}\\ =\frac{\sqrt{x}-4}{(\sqrt{x}-4)(\sqrt{x}+4)}=\frac{1}{\sqrt{x}+4}\)
b. Khi $x=4-2\sqrt{3}=(\sqrt{3}-1)^2\Rightarrow \sqrt{x}=\sqrt{3}-1$
$A=\frac{1}{\sqrt{3}-1+4}=\frac{1}{\sqrt{3}+3}$
tìm giá trị lớn nhất của biểu thức:
\(\dfrac{1-2\sqrt{x}}{\sqrt{x}+3}\)
\(x\ge0\Rightarrow1-2\sqrt{x}\le1\) => Max là 1
\(x\ge0\Rightarrow\sqrt{x}+3\ge3\) => Min là 3
\(\Rightarrow Max=\dfrac{1}{3}\)
( Vì mẫu số càng lớn thì số đó càng nhỏ )