Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Lấp La Lấp Lánh
27 tháng 9 2021 lúc 15:18

\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\left(đk:x\ge-2\right)\)

Đặt \(a=\sqrt{x+5},b=\sqrt{x+2}\left(đk:a,b\ge0,a\ne b\right)\)

\(\Rightarrow\left\{{}\begin{matrix}ab=\sqrt{\left(x+5\right)\left(x+2\right)}=\sqrt{x^2+7x+10}\\a^2-b^2=x+5-x-2=3\end{matrix}\right.\)

PT trở thành: \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

\(\Leftrightarrow\left(a-b\right)\left(ab+1\right)=\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)\left(ab+1-a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(b-1\right)\left(a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=1\\b=1\end{matrix}\right.\)

+ Với a=1

\(\Rightarrow\sqrt{x+5}=1\Leftrightarrow x+5=1\Leftrightarrow x=-4\left(ktm\right)\)

+ Với b=1

\(\Rightarrow\sqrt{x+2}=1\Leftrightarrow x+2=1\Leftrightarrow x=-1\left(tm\right)\)

Vậy \(S=\left\{-1\right\}\)

Hung nguyen
27 tháng 9 2021 lúc 15:19

Đặt \(\left\{{}\begin{matrix}\sqrt{x+5}=a\\\sqrt{x+2=b}\end{matrix}\right.\)

Thì được:

\(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(a-b\right)=0\)

Làm tiếp

Nguyễn Hoàng Minh
27 tháng 9 2021 lúc 15:19

\(ĐK:x\ge-2\)

\(PT\Leftrightarrow\dfrac{x+5-x-2}{\sqrt{x+5}+\sqrt{x+2}}\left(1+\sqrt{x^2+7x+10}\right)=3\\ \Leftrightarrow\dfrac{3\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)}{\sqrt{x+5}+\sqrt{x+2}}=3\\ \Leftrightarrow1+\sqrt{\left(x+5\right)\left(x+2\right)}=\sqrt{x+5}+\sqrt{x+2}\\ \Leftrightarrow\left(\sqrt{x+5}-1\right)\left(1-\sqrt{x+2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1\\\sqrt{x+2}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5=1\\x+2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\ \Leftrightarrow x=-1\)

Big City Boy
Xem chi tiết
Kinder
Xem chi tiết
Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:42

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:43

nhầm

 

nguyễn thị thảo vân
Xem chi tiết
phan tuấn anh
23 tháng 1 2016 lúc 21:01

đặt \(\sqrt{x+5}=a\);\(\sqrt{x+2}=b\)  => ab=\(\sqrt{x^2+7x+10}\) và \(a^2-b^2=3\)

 do đó pt trở thành \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

                         \(\left(a-b\right)\left(1+ab\right)-\left(a-b\right)\left(a+b\right)=0\)

                         \(\left(a-b\right)\left(1+ab-a-b\right)=0\) 

đến đây tự giải tiếp nhé

TRAN NGOC MAI ANH
23 tháng 1 2016 lúc 21:02

em chưa học , em mới lớp 5 thui

Phạm Thế Mạnh
23 tháng 1 2016 lúc 21:07

\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)=\left(\sqrt{x+5}+\sqrt{x+2}\right)\left(\sqrt{x+5}-\sqrt{x+2}\right)\)
\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{\left(x+2\right)\left(x+5\right)}-\sqrt{x+5}-\sqrt{x+2}\right)=0\)
\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{x+5}-1\right)\left(\sqrt{x+2}-1\right)=0\)
Tự làm tiếp nhé ^_^

Lê Thu Hiền
Xem chi tiết
titanic
Xem chi tiết
pham trung thanh
1 tháng 9 2018 lúc 17:32

Đặt từng cái căn là a và b, đưa về dạng

\(\left(a-b\right)\left(ab+1\right)=a^2-b^2\)

Chuyển vế đưa về phương trình tích là xong

Nguyễn Phương Nga
Xem chi tiết
alibaba nguyễn
21 tháng 4 2017 lúc 12:06

\(\sqrt{3x^2-6x-6}=3\sqrt{\left(2-x\right)^5}+\left(7x-19\right)\sqrt{2-x}\)

Điều kiện: \(\hept{\begin{cases}3x^2-6x-6\ge0\\2-x\ge0\end{cases}}\)

\(\Rightarrow x\le1-\sqrt{3}\)

Ta có:

\(\frac{\sqrt{3x^2-6x-6}}{\sqrt{2-x}}=3\left(2-x\right)^2+\left(7x-19\right)\) (điều kiện \(x\le\frac{5}{6}-\frac{\sqrt{109}}{6}\))

\(\Leftrightarrow\frac{3x^2-6x-6}{2-x}=9x^4-30x^3-17x^2+70x+49\)

\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)\left(3x^3-11x^2+4+13\right)=0\)

(Kết hợp với điều kiện ta suy ra) 

\(\Leftrightarrow x=-1\)

tth_new
21 tháng 4 2017 lúc 20:36

x = 1 nha bạn

Cách giải y hệt bạn alibaba nguyễn. Các bạn làm theo nha

Đúng 100%

Đúng 100%

x = 1 nha
Phạm Thùy Linh
Xem chi tiết
Akai Haruma
24 tháng 10 2018 lúc 9:37

Câu 1:

ĐK: \(x\geq -2\)

Đặt \(\sqrt{x+5}=a; \sqrt{x+2}=b(a,b\geq 0)\)

\(\Rightarrow ab=\sqrt{(x+5)(x+2)}=\sqrt{x^2+7x+10}\)

PT trở thành:

\((a-b)(1+ab)=3\)

\(\Leftrightarrow (a-b)(1+ab)=(x+5)-(x+2)=a^2-b^2\)

\(\Leftrightarrow (a-b)(1+ab)-(a-b)(a+b)=0\)

\(\Leftrightarrow (a-b)(1+ab-a-b)=0\)

\(\Leftrightarrow (a-b)(a-1)(b-1)=0\)

\(a\neq b\Rightarrow \left[\begin{matrix} a-1=0\\ b-1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} a=\sqrt{x+5}=1\\ b=\sqrt{x+2}=1\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=-4\\ x=-1\end{matrix}\right.\). Vì $x\geq -2$ nên chỉ có $x=-1$ là nghiệm duy nhất.

Akai Haruma
24 tháng 10 2018 lúc 9:49

Câu 2:

ĐK: \(-4\leq x\leq 4\)

Ta có: \((\sqrt{x+4}-2)(\sqrt{4-x}+2)=2x\)

\(\Leftrightarrow \frac{(x+4)-2^2}{\sqrt{x+4}+2}.(\sqrt{4-x}+2)=2x\)

\(\Leftrightarrow x.\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}=2x\)

\(\Leftrightarrow x\left(\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}-2\right)=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ \sqrt{4-x}+2=2\sqrt{x+4}+4(*)\end{matrix}\right.\)

Xét $(*)$

Đặt \(\sqrt{4-x}=a; \sqrt{x+4}=b\) thì ta có hệ:

\(\left\{\begin{matrix} a^2+b^2=8\\ a+2=2b+4\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a^2+b^2=8\\ a=2(b+1)\end{matrix}\right.\)

\(\Rightarrow 4(b+1)^2+b^2=8\)

\(\Leftrightarrow 5b^2+8b-4=0\Leftrightarrow (5b-2)(b+2)=0\)

\(\Rightarrow b=\frac{2}{5}\) (do \(b\geq 0)\)

\(\Rightarrow x+4=b^2=\frac{4}{25}\Rightarrow x=\frac{-96}{25}\) (t/m)

Vậy \(x\in \left\{ \frac{-96}{25}; 0\right\}\)

Phạm Minh Quang
22 tháng 10 2019 lúc 20:32

.

Khách vãng lai đã xóa
Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
22 tháng 7 2021 lúc 16:07

mong mọi người giải giúp em vs gianroigianroi