CHỨNG TỎ: A = n3 + n3 + 11n chia hết cho 6
Chứng minh rằng với n ∈ N * : n 3 + 11 n chia hết cho 6.
Cách 1: Chứng minh quy nạp.
Đặt Un = n3 + 11n
+ Với n = 1 ⇒ U1 = 12 chia hết 6
+ giả sử đúng với n = k ≥ 1 ta có:
Uk = (k3 + 11k) chia hết 6 (giả thiết quy nạp)
Ta cần chứng minh: Uk + 1 = (k + 1)3 + 11(k + 1) chia hết 6
Thật vậy ta có:
Uk+1 = (k + 1)3 + 11(k +1)
= k3 + 3k2 + 3k + 1 + 11k + 11
= (k3 + 11k) + 3k2 + 3k + 12
= Uk + 3(k2 + k + 4)
Mà: Uk ⋮ 6 (giả thiết quy nạp)
3.(k2 + k + 4) ⋮ 6. (Vì k2 + k + 4 = k(k + 1) + 4 ⋮2)
⇒ Uk + 1 ⋮ 6.
Vậy n3 + 11n chia hết cho 6 ∀n ∈ N*.
Cách 2: Chứng minh trực tiếp.
Có: n3 + 11n
= n3 – n + 12n
= n(n2 – 1) + 12n
= n(n – 1)(n + 1) + 12n.
Vì n(n – 1)(n + 1) là tích ba số tự nhiên liên tiếp nên có ít nhất 1 thừa số chia hết cho 2 và 1 thừa số chia hết cho 3
⇒ n(n – 1)(n + 1) ⋮ 6.
Lại có: 12n ⋮ 6
⇒ n3 + 11n = n(n – 1)(n + 1) + 12n ⋮ 6.
n^3+11n chia hết cho 6
n^3+11n=n^3-n+12n
=(n-1)n(n+1)+12n
vậy n^3+11n luôn chia hết cho 6, với mọi n
Chứng minh bằng phương pháp quy nạp n 3 + 11 n chia hết cho 6.
* Với n =1 ta có 1 3 + 11.1 = 12 chia hết cho 6 đúng.
* Giả sử với n = k thì k 3 + 11 k chia hết cho 6.
* Ta phải chứng minh với n =k+1 thì ( k + 1 ) 3 + 11(k +1) chia hết cho 6.
Thật vậy ta có :
k + 1 3 + 11 k + 1 = k 3 + 3 k 2 + 3 k + 1 + 11 k + 11 = ( k 3 + 11 k ) + 3 k ( k + 1 ) + 12 *
Ta có; k 3 +11k chia hết cho 6 theo bước 2.
k(k+1) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2 ⇒ 3 k ( k + 1 ) ⋮ 6
Và 12 hiển nhiên chia hết cho 6.
Từ đó suy ra (*) chia hết cho 6 (đpcm).
chứng minh
a) n3 – n + 4 không chia hết cho 3 ;
b) n2 + 11n + 39 không chia hết cho 49 ;
c) n2 + 3n + 5 không chia hết cho 121.
a) Ta có n3 - n + 4
= n(n2 - 1) + 4
= (n - 1)n(n + 1) + 4
Vì (n - )n(n + 1) \(⋮3\)(tích 3 số nguyên liên tiếp)
mà 4 \(⋮̸\)3
=> n3 - n + 4 không chia hết cho 3
chứng minh n3+3n2+2n chia hết cho 6 (mình ko nhớ n3 hay n3)
Có: \(n^3+3n^2+2n=n^3+n^2+2n^2+2n\)
\(=n^2\left(n+1\right)+2n\left(n+1\right)=\left(2n+n^2\right)\left(n+1\right)\)
\(=n\left(n+2\right)\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)
Có \(n;n+1;n+2\)là 3 số nguyên liên tiếp
\(\Rightarrow\)trong đó có một số chia hết cho 3; có ít nhất một số chia hết cho 2
\(\Rightarrow\)\(n\left(n+1\right)\left(n+2\right)\)chia hết cho \(2\times3\)
\(\Rightarrow\)\(n\left(n+1\right)\left(n+2\right)\)chia hết cho 6
\(\Rightarrow\)\(n^3+3n^2+2n\)chia hết cho 6
Bạn Phạm Trần Minh Ngọc làm thiếu rồi, mình phải có thêm dữ kiện 2 và 3 là 2 số nguyên tố cùng nhau nữa mới đủ ~~
Có:
n^ 3 + 3n^ 2 + 2n
= n ^3 + n^ 2 + 2n ^2 + 2n
= n ^2( n + 1 )+ 2n (n + 1)
= (2n + n ^2 )(n + 1 )
= n( n + 2)( n + 1)
= n( n + 1)(n + 2)Có n;n + 1;n + 2là 3 số nguyên liên tiếp
⇒ trong đó có một số chia hết cho 3; có ít nhất một số chia hết cho 2
⇒n (n + 1)( n + 2) chia hết cho 2 × 3
⇒n (n + 1)( n + 2) chia hết cho 6
⇒n^ 3 + 3n^ 2 + 2n chia hết cho 6
Chứng minh rằng n3 – n chia hết cho 6 với mọi số nguyên n.
A = n3 – n (có nhân tử chung n)
= n(n2 – 1) (Xuất hiện HĐT (3))
= n(n – 1)(n + 1)
n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên
+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2
+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3
Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.
chứng minh rằng với số nguyên n . Ta có A = ( n3 + 11.n ) chia hết cho 3
#Toán lớp 6Ta có:
n(n + 1)(n + 2)
= (n² + n)(n + 2)
= n³ + 2n² + n² + 2n
= n³ + 3n² + 2n
Mà n(n + 1)(n + 2) là tích của ba số nguyên liên tiếp (do n là số nguyên)
⇒ n(n + 1)(n + 2) ⋮ 3
⇒ (n³ + 3n² + 2) ⋮ 3
Ta có:
n³ + 11n
= n³ + 3n² + 2n - 3n² + 9n
= (n³ + 3n² + 2n) - 3n(n - 3)
Ta có:
3 ⋮ 3
⇒ 3n(n - 3) ⋮ 3 (với mọi n nguyên)
Mà (n³ + 3n² + 2n) ⋮ 3 (cmt)
⇒ [(n³ + 3n² + 2n) - 3n(n - 3)] ⋮ 3
Vậy (n³ + 11n) ⋮ 3 với mọi số nguyên n
Chứng minh:
a) 50 n + 2 – 50 n + 1 chia hết cho 245 với mọi số tự nhiên n.
b) n 3 - n chia hết cho 6 với mọi số nguyên n.
a) Gợi ý: phân tích 50 n + 2 - 50 n + 1 = 245.10. 50 n .
b) Gợi ý: phân tích n 3 - n = n(n - 1)(n +1).
Chứng minh rằng n3+3n2+ 2n chia hết cho 6 với mọi n ϵ Z
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)
\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)
\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)
Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)
\(n^3+3n^2+2n\)
\(=n\left(n^2+3n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
bài 58: chứng minh rằng n3 - n chia hết cho 6 với mọi số nguyên n.
\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì \(n-1,n,n+1\) là 3 số nguyên liên tiếp nên có 1 số chia hết cho 2,1 số chia hết cho 3
Mà (2,3)=1\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2.3=6\)