Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
LuKenz
Xem chi tiết
LuKenz
Xem chi tiết
Quốc Huy
Xem chi tiết
Lấp La Lấp Lánh
25 tháng 10 2021 lúc 12:29

a) Ta có: \(\left\{{}\begin{matrix}BD=AD\\CE=AE\end{matrix}\right.\)(t/c 2 tiếp tuyến cắt nhau)

\(\Rightarrow BD+CE=AD+AE=ED\)

b) Ta có: \(\left\{{}\begin{matrix}\widehat{AOD}=\widehat{BOD}=\dfrac{1}{2}\widehat{AOB}\\\widehat{AOE}=\widehat{EOC}=\dfrac{1}{2}\widehat{AOC}\end{matrix}\right.\)(t/c 2 tiếp tuyến cắt nhau)

\(\Rightarrow\widehat{DOE}=\widehat{AOD}+\widehat{AOE}=\dfrac{1}{2}\left(\widehat{AOB}+\widehat{AOC}\right)=\dfrac{1}{2}.180^0=90^0\)

(Do \(\widehat{AOB},\widehat{AOC}\) là 2 góc kề bù)

c) Gọi K là trung điểm DE

Ta có: \(DB\perp BC,EC\perp BC\Rightarrow BD//EC\)

\(\Rightarrow BDEC\) là hình thang

Ta có: Tam giác ABC vuông tại A nội tiếp đường tròn (O)

=> O là trung điểm cạnh huyền BC

Xét hthang BDEC có:

O là trung điểm BC(cmt)

K là trung điểm DE(cách vẽ)

=> OK là đường trung bình

\(\Rightarrow\left\{{}\begin{matrix}OK//EC\\OK=\dfrac{1}{2}\left(BD+EC\right)\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}OK=\dfrac{1}{2}DE=DK\\OK\perp BC\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}O\in\left(K\right)\\OK\perp BC\end{matrix}\right.\) => BC là tiếp tuyến đường tròn (K)

 

LuKenz
Xem chi tiết
Giang Do
Xem chi tiết
Jason
13 tháng 12 2017 lúc 20:47

a)theo t/c 2 tiếp tuyến cắt nhau ta có:

\(BD=DA;CE=AE\) ; \(\widehat{BOD}=\widehat{DOA};\widehat{COE}=\widehat{EOA};\widehat{BDO}=\widehat{ADO};\widehat{CEO}=\widehat{AEO}\)

ta có :\(\widehat{BOD}+\widehat{DOA}+\widehat{COE}+\widehat{EOA}=180^O\)

   <=> \(\widehat{DOA}+\widehat{DOA}+\widehat{EOA}+\widehat{EOA}=180^O\)

   <=>\(2\widehat{DOA}+2\widehat{EOA}=180^O\)

   <=>\(\widehat{DOA}+\widehat{EOA}=90^O\)

hay \(\widehat{DOE}=90^O\)(DPCM)

b) ta có \(DE=DA+EA=BD+CE\)(DPCM)

C) Gọi H là trung điểm của DE ; nối H với O

+ xét tam giác DOE vuông tại O có

HO là đường trung tuyến => DH=CH=HO

=>D;C;O thuộc (H) đường kính CD

+ xét tứ giác BCED có

BD // CE ( cùng vuông với BC )=> BCED là hình thang 

mà H là trung điểm DE ;O là trung điểm BC => HO là đường trung bình của hình thamg 

=>HO // BD 

mà BD  vuông với BC nên HO vuông với BC

+ vì O thuộc BC 

      O thuộc (H)

      HO vuông với BC 

=> BC là tiếp tuyến (H) đường kính DE

girl yêu
26 tháng 8 2019 lúc 17:13

mày vào tcn của tao, xong vô thống kê hỏi đáp của tao đi, rồi bấm vào 1 câu trả lời, mày là chó, chuyên đi copy bài ng khác và câu hỏi tunogw tự

Te
Xem chi tiết
Ninh thuphuong
Xem chi tiết
Lê Ngọc Bích Trang
Xem chi tiết
Tạ Duy Phương
6 tháng 12 2015 lúc 19:58

Gọi M là trung điểm DE. Khi đó MO là đường TB của hình thang BCED => MO vg với BC 

Mà M là tâm đường tròn đường kính DE => DE là tiếp tuyến ...

Nguyễn Bảo Châu
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2021 lúc 20:02

1: Xét tứ giác ABOC có 

\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối

\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Nguyễn Lê Phước Thịnh
12 tháng 5 2021 lúc 20:04

2:

a) Cm ΔAOE cân tại E

Xét (O) có

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: OA là tia phân giác của \(\widehat{BOC}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\Leftrightarrow\widehat{BOA}=\widehat{COA}\)

mà \(\widehat{BOA}+\widehat{BAO}=90^0\)(ΔBOA vuông tại B)

nên \(\widehat{COA}=\widehat{BAO}\)

\(\Leftrightarrow\widehat{EOA}=\widehat{BAO}\)

mà \(\widehat{BAO}+\widehat{EAO}=90^0\)

nên \(\widehat{EOA}=\widehat{EAO}\)

Xét ΔEOA có \(\widehat{EOA}=\widehat{EAO}\)(cmt)

nên ΔEOA cân tại E(Định lí đảo của tam giác cân)