a) Cho x - \(\sqrt{x}\). Giả sử x > 1, C/minh M - |M|= 0
b) Tìm Min M
Cho biểu thức : A= \(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
a) rút gọn A
b ) giả sử x>1 cmr A-|A| =0
c) Tìm Min A
ĐK: \(x>0\).
a)\(A=\dfrac{x^2+x+1}{x-\sqrt{x}+1}-2\sqrt{x}-1\)
\(A=\dfrac{x^2+x+1-\left(2\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)
\(=\dfrac{-2x\sqrt{x}+x^2+3x-2\sqrt{x}-x+\sqrt{x}}{x-\sqrt{x}+1}\)
\(=\dfrac{-2x\sqrt{x}+x^2+2x-\sqrt{x}}{x-\sqrt{x}+1}\)
b)Với x>1 thì A>0 nên |A|=A do đó A-|A|=0.
Giả sử: a,b >0 và m,n ∈ Z*
Tìm min của: \(P=ax^m+b\dfrac{1}{x^n}
\) với x>0
Lời giải:
Áp dụng BĐT Cô - si:
\(P=ax^m+\frac{b}{x^n}=\frac{a}{n}x^m+\frac{a}{n}x^m+...+\frac{a}{n}x^m+\frac{b}{mx^n}+...+\frac{b}{mx^n}\)
\(=(m+n)\sqrt[m+n]{(\frac{a}{n})^n.x^{mn}.(\frac{b}{m})^m.\frac{1}{x^{mn}}}\)
\(=(m+n)\sqrt[m+n]{\frac{a^nb^m}{n^n.m^m}}\)
a) Giả sử phương trình bậc 2: \(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2=0\) có 2 nghiệm \(x_1,x_2\)thỏa mãn \(x_1+x_2\le4\). Tìm Max, Min của \(P=x^3_1+x^3_2+x_1x_2\left(3x_1+3x_2+8\right)\)
b) Cho hàm \(y=f\left(x\right)=2\left(m-1\right)x+\dfrac{m\left(x-2\right)}{\left|x-2\right|}\). Tìm tất cả các giá trị của \(m\) để \(f\left(x\right)< 0,\forall x\in\left[0;1\right]\)
b, Ta có : \(0\le x\le1\)
\(\Rightarrow-2\le x-2\le-1< 0\)
Ta có : \(y=f\left(x\right)=2\left(m-1\right)x+\dfrac{m\left(x-2\right)}{\left(2-x\right)}\)
\(=2\left(m-1\right)x-m< 0\)
TH1 : \(m=1\) \(\Leftrightarrow m>0\)
TH2 : \(m\ne1\) \(\Leftrightarrow x< \dfrac{m}{2\left(m-1\right)}\)
Mà \(0\le x\le1\)
\(\Rightarrow\dfrac{m}{2\left(m-1\right)}>1\)
\(\Leftrightarrow\dfrac{m-2\left(m-1\right)}{2\left(m-1\right)}>0\)
\(\Leftrightarrow\dfrac{2-m}{m-1}>0\)
\(\Leftrightarrow1< m< 2\)
Kết hợp TH1 => m > 0
Vậy ...
\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2=0\)
Để pt có hai nghiệm thỏa mãn
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\x_1+x_2=2\left(m-1\right)\le4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\left(m-2\right)\left(m+2\right)\ge0\\m\le3\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m\in\left[-2;0\right]\cup\left(2;+\infty\right)\cup\left\{2\right\}\\m\le3\end{matrix}\right.\)\(\Rightarrow m\in\left[-2;0\right]\cup\left[2;3\right]\)
\(P=x^3_1+x_2^3+x_1x_2\left(3x_1+3x_2+8\right)\)
\(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+3x_1x_1\left(x_1+x_2\right)+8x_1x_2\)
\(=8\left(m-1\right)^3+8\left(-m^3+m^2+2m+1\right)\)
\(=-16m^2+40m\)
Vẽ BBT với \(f\left(m\right)=-16m^2+40m\) ;\(m\in\left[-2;0\right]\cup\left[2;3\right]\)
Tìm được \(f\left(m\right)_{min}=-144\Leftrightarrow m=-2\)
\(f\left(m\right)_{max}=16\Leftrightarrow m=2\)
\(\Rightarrow P_{max}=16;P_{min}=-144\)
Vậy....
M = \(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}+\frac{2x-2\sqrt{x}}{\sqrt{x}-1}\)
A, RG
B, TÌM x để M =0,M=4
C, tìm min M
với đk 0 ≤ x # 1, biểu thức đã cho xác định
P = (x+2)/(x√x-1) + (√x+1)/(x+√x+1) - (√x+1)/(x-1)
P = (x+2)/ (√x-1)(x+√x+1) + (√x+1)/ (x+√x+1) - 1/(√x-1) {hđt: x-1 = (√x-1)(√x+1)}
P = [(x+2) + (√x+1)(√x-1) - (x+√x+1)] / (x√x-1)
P = (x-√x)/(x√x-1) = (√x-1)√x /(√x-1)(x+√x+1)
P = √x / (x+√x+1)
- - -
ta xem ở trên là biểu thức rút gọn của P, để chứng minh P < 1/3 ta biến đổi tiếp:
P = 1/ (√x + 1 + 1/√x)
bđt côsi: √x + 1/√x ≥ 2 ; dấu "=" khi x = 1 nhưng do đk xác định nên ko có dấu "="
vậy √x + 1/√x > 2 <=> √x + 1 + 1/√x > 3 <=> P = 1/(√x + 1 + 1/√x) < 1/3 (đpcm)
Cho pt bậc x2 - (3m-1)x + 2m2 + m - 1=0 (m là tham số)
a) Giải pt khi m= -1
b) Giả sử x12 , x22 là hai nghiệm pb của chương trình. Tìm m để B= x12 - x22 - 3x1x2 đạt min
a: Khi m=-1 thì phương trình sẽ là:
x^2-(-3-1)x+2-1-1=0
=>x^2+4x=0
=>x=0 hoặc x=-4
Cho pt: \(mx^2-\left(2m+1\right)x+m+3=0\)
a) tìm m để pt trên có 2 nghiệm phân biệt ≠ 0
b) giả sử \(x_1;x_2\) là 2 nghiệm của pt trên. tìm m để:
\(\dfrac{mx_1^2+\left(2m+1\right)x_2+m+3}{m}+\dfrac{m}{mx_2^2+\left(2m+1\right)x_1+m+3}=2\)
a: \(\text{Δ}=\left(2m+1\right)^2-4m\left(m+3\right)\)
\(=4m^2+4m+1-4m^2-12m\)
\(=-8m+1\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow-8m+1>0\)
\(\Leftrightarrow-8m>-1\)
hay \(m< \dfrac{1}{8}\)
Cho biểu thức \(I=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
a, Rút gọn biểu thức I
b, Tìm x để I=2
c, Giả sử x>1. Chứng minh rằng \(I-|I|=0\)
d, Tìm giá trị nhỏ nhất của I
ĐK:x>0
a) \(I=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}=\dfrac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-\left(2\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}+1\right)+1-2\sqrt{x}-1=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)b)
Ta có \(I=2\Leftrightarrow x-\sqrt{x}=2\Leftrightarrow x-\sqrt{x}-2=0\Leftrightarrow x+\sqrt{x}-2\sqrt{x}-2=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}+1\right)=0\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{x}+1=0\\\sqrt{x}-2=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{x}=-1\left(ktm\right)\\\sqrt{x}=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
Vậy x=4 thì I=2
c)
Ta có x>1\(\Leftrightarrow x>\sqrt{x}\Leftrightarrow x-\sqrt{x}>0\)
Vậy \(I-\left|I\right|=x-\sqrt{x}-\left|x-\sqrt{x}\right|=x-\sqrt{x}-\left(x-\sqrt{x}\right)=0\)
d)\(I=x-\sqrt{x}=x-2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
Ta có \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge\dfrac{1}{4}\Leftrightarrow I\ge\dfrac{1}{4}\)
Dấu bằng xảy ra khi \(\sqrt{x}-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{4}\)
Vậy GTNN của I là \(\dfrac{1}{4}\) và xảy ra khi \(x=\dfrac{1}{4}\)
@Nguyễn Việt Lâm @Nguyễn Thanh Hằng
@Akai Haruma @DƯƠNG PHAN KHÁNH DƯƠNG
@Nguyễn Huy Tú @Arakawa Whiter
Mọi người ơi giúp em với ạ !!
\(\frac{x\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
min cuả bểu thức này khi x>1
Cho pt:\(x^2-2\left(m+1\right)x+4m-m^2\)
Tìm min A=/x1-x2/
Giả sử 1 nguyên hàm của hàm số f(x)= \(\dfrac{x^2}{\sqrt{1-x^3}}+\dfrac{1}{\sqrt{x}.\left(1+\sqrt{x}\right)^2}\) có dạng : \(A\sqrt{1-x^3}+\dfrac{B}{1+\sqrt{x}}\) tính A+B=?
Cách làm đơn giản nhất:
Do \(\int f\left(x\right)dx=F\left(x\right)\Rightarrow F'\left(x\right)=f\left(x\right)\)
Ta có: \(F\left(x\right)=A\sqrt{1-x^3}+\dfrac{B}{1+\sqrt{x}}\)
\(\Rightarrow F'\left(x\right)=\dfrac{A\left(-3x^2\right)}{2\sqrt{1-x^3}}+B.\left(-\dfrac{\dfrac{1}{2\sqrt{x}}}{\left(1+\sqrt{x}\right)^2}\right)\)
\(\Rightarrow F'\left(x\right)=\dfrac{-3A}{2}.\dfrac{x^2}{\sqrt{1-x^3}}-\dfrac{B}{2}.\dfrac{1}{\sqrt{x}\left(1+\sqrt{x}\right)^2}=f\left(x\right)\)
Đồng nhất hệ số ta được:
\(\left\{{}\begin{matrix}\dfrac{-3A}{2}=1\\\dfrac{-B}{2}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A=\dfrac{-2}{3}\\B=-2\end{matrix}\right.\) \(\Rightarrow A+B=-\dfrac{8}{3}\)