ĐK:x>0
a) \(I=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}=\dfrac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-\left(2\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}+1\right)+1-2\sqrt{x}-1=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)b)
Ta có \(I=2\Leftrightarrow x-\sqrt{x}=2\Leftrightarrow x-\sqrt{x}-2=0\Leftrightarrow x+\sqrt{x}-2\sqrt{x}-2=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}+1\right)=0\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{x}+1=0\\\sqrt{x}-2=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{x}=-1\left(ktm\right)\\\sqrt{x}=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
Vậy x=4 thì I=2
c)
Ta có x>1\(\Leftrightarrow x>\sqrt{x}\Leftrightarrow x-\sqrt{x}>0\)
Vậy \(I-\left|I\right|=x-\sqrt{x}-\left|x-\sqrt{x}\right|=x-\sqrt{x}-\left(x-\sqrt{x}\right)=0\)
d)\(I=x-\sqrt{x}=x-2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
Ta có \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge\dfrac{1}{4}\Leftrightarrow I\ge\dfrac{1}{4}\)
Dấu bằng xảy ra khi \(\sqrt{x}-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{4}\)
Vậy GTNN của I là \(\dfrac{1}{4}\) và xảy ra khi \(x=\dfrac{1}{4}\)
@Nguyễn Việt Lâm @Nguyễn Thanh Hằng
@Akai Haruma @DƯƠNG PHAN KHÁNH DƯƠNG
@Nguyễn Huy Tú @Arakawa Whiter
Mọi người ơi giúp em với ạ !!
Mình bị nhầm ở chỗ:
\(\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\Leftrightarrow A\ge-\dfrac{1}{4}\)
Và GTNN của A là \(-\dfrac{1}{4}\)
Bạn thông cảm