Cho 2x+y=1 Tìm giá trị lớn nhất của Q=-5x^2+y^2+2
1/ cho \(^{5x^2+y^2+4xy+4x+4y-1=0}\)
tìm giá trị lớn nhất của S=2x+y-2 và giá trị x,y
2/cho \(x^2+2xy+7.\left(x+y\right)+2y^2+10=0\)
tìm giá trị lớn nhất của S=x+y+1 và giá trị x,y
3/ cho \(3x^2+y^2+2xy+4=7x+3y\)
tìm giá trị lớn nhất của S=x+y+1
Cho 2x+y=6
a)Tìm giá trị nhỏ nhất của A=\(2x^2+y^2\)
b) Tìm giá trị lớn nhất của B=xy
\(2x+y=6\Leftrightarrow x=\frac{6-y}{2}\)
a) \(A=2x^2+y^2=2\left(\frac{6-y}{2}\right)^2+y^2=\frac{2\left(6-y\right)^2}{4}+y^2\)
\(=\frac{2\left(36-12y+y^2\right)}{4}+y^2\)
\(=\frac{36-12y+y^2}{2}+\frac{2y^2}{2}=\frac{3y^2-12y+36}{2}\)
\(=\frac{3\left(y-2\right)^2+24}{2}\ge\frac{24}{2}=12\)(dấu "=" xảy ra khi y =2)
Vậy Min A = 12 khi y = 2
b) \(6=2x+y\ge2\sqrt{2xy}=2\sqrt{2B}\)
Suy ra \(8B\le36\Leftrightarrow B\le\frac{9}{2}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x=y\\2x+y=6\end{cases}}\Leftrightarrow2x=y=3\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=3\end{cases}}\)
Vậy Max \(B=\frac{9}{2}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=3\end{cases}}\)
Tìm giá trị lớn nhất -2x^2-8x+1
-4xy+4x-y^2-5x^2+3 giúp chi tiết
a: \(-2x^2-8x+1\)
\(=-2x^2-8x-8+9\)
\(=-2\left(x^2+4x+4\right)+9\)
\(=-2\left(x+2\right)^2+9< =9\forall x\)
Dấu '=' xảy ra khi x+2=0
=>x=-2
b: \(-5x^2-y^2-4xy+4x+3\)
\(=\left(-4x^2-4xy-y^2\right)+\left(-x^2+4x-4\right)+7\)
\(=-\left(2x+y\right)^2-\left(x-2\right)^2+7< =7\forall x,y\)
Dấu '=' xảy ra khi 2x+y=0 và x-2=0
=>x=2 và y=-2x=-4
tìm giá trị lớn nhất của biểu thức
a) 2x-2xy-2x2-y2
tìm giá trị nhỏ nhất của biểu thức
a) (x-1)(x+2)(x+3)(x+6)
b) 5x2+y2-6x+5y+1
c) x2-2x+y-4y+6
Cho x>0 ,y>0 và x+y =2 . Tìm giá trị nhỏ nhất của biểu thức :
P = 2x^2 -y^2 -5x +1/x +2020
\(x+y=2\Rightarrow y=2-x\)
\(P=2x^2-\left(2-x\right)^2-5x+\dfrac{1}{x}+2020=x^2-x+\dfrac{1}{x}+2016\)
\(P=x^2+1-x+\dfrac{1}{x}+2015\ge2x-x+\dfrac{1}{x}+2015\)
\(P\ge x+\dfrac{1}{x}+2015\ge2\sqrt{\dfrac{x}{x}}+2015=2017\)
Dấu "=" xảy ra khi \(x=y=1\)
Cho \(x^2+y^2=1\) Tìm giá trị nhỏ nhất và lớn nhất của \(P=\frac{x+y}{2x+y+3}\)
cho
\(A=\frac{xy^2+y^4-xy^2+1}{x^2y^4+2y^4+2x^2+2}\). tìm giá trị của x,y để A có giá trị lớn nhất
1)Tìm giá trị lớn nhất và nhỏ nhất của A=2x+1/x^2+2
2) tìm giá trị lớn nhất của E=1000/x^2+y^2-20(x+y)+2210
1) \(A=\frac{2x+1}{x^2+2}\)
\(=\frac{\frac{1}{2}\left(x^2+4x+4\right)-\frac{1}{2}\left(x^2+2\right)}{x^2+2}\)
\(=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}-\frac{1}{2}\ge-\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy GTNN của \(A=-\frac{1}{2}\)khi x = -2
Cho 2x+y=6 tìm giá trị nhỏ nhất của M=5x^2+y^2
mọi người ơi giúp mk vs ạ
mk gấp lắm rồi ạ