Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Táo

Những câu hỏi liên quan
Hi Mn
Xem chi tiết
Ngô Thành Chung
Xem chi tiết
Ngô Thành Chung
12 tháng 8 2021 lúc 9:45

Đừng dùng đạo hàm hay gì nhá

Diệp Nguyễn Thị Huyền
Xem chi tiết
Minz Ank
Xem chi tiết
Trần Tuấn Hoàng
13 tháng 1 2023 lúc 20:25

\(P=\dfrac{4}{a^2+b^2}+\dfrac{3}{ab}\)

Áp dụng BĐT Bunhiacopxki ta có:

\(\left(\dfrac{4}{a^2+b^2}+\dfrac{3}{ab}\right)\left[4\left(a^2+b^2\right)+12ab\right]\ge\left[\sqrt{\dfrac{4}{a^2+b^2}.4\left(a^2+b^2\right)}+\sqrt{\dfrac{3}{ab}.12ab}\right]^2=100\)

\(\Rightarrow P\ge\dfrac{100}{4\left(a^2+b^2\right)+12ab}=\dfrac{100}{4\left(a+b\right)^2+4ab}=\dfrac{25}{\left(a+b\right)^2+ab}\)

\(\Rightarrow P\ge\dfrac{25}{4^2+ab}=\dfrac{25}{16+ab}\) (vì \(a+b\le4\)).

Mặt khác ta có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\le\dfrac{4^2}{4}=4\)

\(\Rightarrow P\ge\dfrac{25}{16+4}=\dfrac{5}{4}\)

Dấu "=" xảy ra khi \(a=b=2\).

Vậy \(MinP=\dfrac{5}{4}\), đạt tại \(a=b=2\)

Nguyễn Đức Hùng
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 23:22

#include <bits/stdc++.h>

using namespace std;

double a,b,c,d;

int main()

{

cin>>a>>b>>c>>d;

cout<<min(a,min(b,min(c,d)));

return 0;

}

Bùi Tiến Hùng
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2023 lúc 23:51

\(\left(a+b\right)^2\ge4ab=4\Rightarrow a+b\ge2\)

\(P=\dfrac{a^4}{a+ab}+\dfrac{b^4}{b+ab}\ge\dfrac{\left(a^2+b^2\right)^2}{a+b+2ab}=\dfrac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{a+b+2}\)

\(\ge\dfrac{\dfrac{1}{2}\left(a+b\right)^2.2ab}{a+b+2}=\dfrac{\left(a+b\right)^2}{a+b+2}=\dfrac{\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}\left(a+b\right)^2}{a+b+2}\)

\(\ge\dfrac{\dfrac{1}{4}\left(a+b\right)^2+3ab}{a+b+2}=\dfrac{\dfrac{1}{4}\left(a+b\right)^2+1+2}{a+b+2}\)

\(\ge\dfrac{2\sqrt{\dfrac{1}{4}\left(a+b\right)^2.1}+2}{a+b+2}=\dfrac{a+b+2}{a+b+2}=1\)

Dấu = xảy ra khi \(a=b=1\)

Đặng Phương Nga
Xem chi tiết
Nguyễn Hoàng Bảo Nhi
16 tháng 4 2020 lúc 16:11

Ta có : 

\(abc=\frac{1}{a+b+c}\)

\(\Rightarrow abc.\left(a+b+c\right)=1\)

Lai có : \(P=\left(a+b\right)\left(a+c\right)\)

\(=a^2+ab+bc+ac\)

\(=a.\left(a+b+c\right)+bc\)

Áp dụng BĐT AM - GM ta có : 

P= \(a\left(a+b+c\right)+bc\ge2\sqrt{a.\left(a+b+c\right).bc}=2\sqrt{1}=2\)

Dấu " = " xảy ra \(\Leftrightarrow a.\left(a+b+c\right)=bc\)

Khách vãng lai đã xóa
Day anh
Xem chi tiết
Đinh Đức Hùng
8 tháng 8 2017 lúc 13:38

*) Tìm GTNN của \(A=a^2+b^2+c^2\)

Ta có :\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a.1+b.1+c.1\right)^2\)(Bunhiacopxki)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{25}{3}\)

*) Tìm GTLN của \(B=ac+bc+ac\)

Ta có  \(a^2+b^2+c^2\ge ab+ac+bc\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3ab+3ac+3bc\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)

\(\Rightarrow ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=\frac{25}{3}\)

Nguyen Dang
Xem chi tiết