K=\(\dfrac{x+9}{x-9}\)
CMR: Nếu:K=\(\dfrac{y+81}{y-81}\) thì \(\dfrac{y}{x}\) là số nguyên chia hết cho 3
1. \(\left(y+\dfrac{1}{3}\right)\)+\(\left(y+\dfrac{1}{9}\right)\)+\(\left(y+\dfrac{1}{27}\right)\)+\(\left(y+\dfrac{1}{81}\right)\)=\(\dfrac{56}{81}\)
2. 18:\(\dfrac{Xx0,4+0,32}{X}\)+5=14
3. \(\dfrac{3xX}{2}\)=\(\dfrac{2}{5}+\)X\(+\dfrac{1}{3}\)
4. X-\(\dfrac{11}{15}\)=\(\dfrac{3+X}{5}\)
Bài 1:
$(y+\frac{1}{3})+(y+\frac{1}{9})+(y+\frac{1}{27})+(y+\frac{1}{81})=\frac{56}{81}$
$(y+y+y+y)+(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81})=\frac{56}{81}$
$4\times y+\frac{40}{81}=\frac{56}{81}$
$4\times y=\frac{56}{81}-\frac{40}{81}=\frac{16}{81}$
$y=\frac{16}{81}:4=\frac{4}{81}$
Bài 2:
$18: \frac{x\times 0,4+0,32}{x}+5=14$
$18: \frac{x\times 0,4+0,32}{x}=14-5=9$
$\frac{x\times 0,4+0,32}{x}=18:9=2$
$x\times 0,4+0,32=2\times x$
$2\times x-x\times 0,4=0,32$
$x\times (2-0,4)=0,32$
$x\times 1,6=0,32$
$x=0,32:1,6=0,2$
Bài 3:
$\frac{3\times x}{2}=\frac{2}{5}+x+\frac{1}{3}$
$1,5\times x=x+\frac{11}{15}$
$1,5\times x-x=\frac{11}{15}$
$x\times (1,5-1)=\frac{11}{15}$
$x\times 0,5=\frac{11}{15}$
$x=\frac{11}{15}: 0,5=\frac{22}{15}$
Bài 1: Tính giá trị biểu thức sau:
\(\dfrac{1}{1-10+50}+\dfrac{4}{4-20+50}+\dfrac{9}{9-30+50}+...+\dfrac{81}{81-90+50}\)
Bài 2: Có bao nhiêu bộ số (x,y,z) nguyên dương thỏa mãn x3 + y3 + z3 = 3xyz +2017
Bài 3: Tìm tích của tất cả các số tự nhiên x,y thỏa mãn: 2x + 9 = y2
cho x,y,z là 3 số thực tm \(x+y+z=18\sqrt{2}\).
Cmr \(\dfrac{1}{\sqrt{x\left(y+z\right)}}+\dfrac{1}{\sqrt{y\left(z+x\right)}}+\dfrac{1}{\sqrt{z\left(x+y\right)}}+2\ge\dfrac{9}{4}\)
mng tham khảo
\(\sqrt{2x\left(y+z\right)}< =\dfrac{2x+y+z}{2}\)
=>\(\dfrac{1}{\sqrt{x\left(y+z\right)}}>=\dfrac{2\sqrt{2}}{2x+y+z}\)
=>\(P>=2\sqrt{2}\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\)
\(\Leftrightarrow P>=2\sqrt{2}\cdot\dfrac{\left(1+1+1\right)^2}{\left(2x+y+z\right)+x+2y+z+x+y+2z}=\dfrac{18\sqrt{2}}{4\cdot18\sqrt{2}}=\dfrac{1}{4}\)
Dấu = xảy ra khi x=y=z=6căn 2
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}\)và 2x+y-z=81
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{2}\)và 5x-y+3z=124
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)và x.y.z=810
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{6}\)và\(x^2.y^2.z^2=288^2\)
a.
Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=3k\\z=4k\end{matrix}\right.\)
Thế vào \(2x+y-z=81\)
\(\Rightarrow2.5k+3k-4k=81\)
\(\Rightarrow9k=81\)
\(\Rightarrow k=9\)
\(\Rightarrow\left\{{}\begin{matrix}x=5k=45\\y=3k=27\\z=4k=36\end{matrix}\right.\)
b.
Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{2}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\\z=2k\end{matrix}\right.\)
Thế vào \(5x-y+3z=124\)
\(\Rightarrow5.3k-5k+3.2k=124\)
\(\Rightarrow16k=124\)
\(\Rightarrow k=\dfrac{31}{4}\) \(\Rightarrow\left\{{}\begin{matrix}x=3k=\dfrac{93}{4}\\y=5k=\dfrac{155}{4}\\z=2k=\dfrac{31}{2}\end{matrix}\right.\)
c.
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
Thế vào \(xyz=810\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k=6\\y=3k=9\\z=5k=15\end{matrix}\right.\)
d.
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{6}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=6k\end{matrix}\right.\)
Thế vào \(x^2y^2z^2=288^2\)
\(\Rightarrow\left(2k\right)^2.\left(3k\right)^2.\left(6k\right)^2=288^2\)
\(\Rightarrow\left(k^2\right)^3=64\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k=4\\y=3k=6\\z=6k=12\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=2k=-4\\y=3k=-6\\z=6k=-12\end{matrix}\right.\)
\(\left(x+\dfrac{1}{3}\right)+\left(x+\dfrac{1}{9}\right)+\left(x+\dfrac{1}{27}\right)+\left(x+\dfrac{1}{81}\right)=\dfrac{56}{81}\)
Tham khảo link: https://olm.vn/hoi-dap/detail/55111422944.html
`(x+1/3)+(x+1/9)+(x+1/27)+(x+1/81)=56/81`
`x+x+x+x+1/3+1/9+1/27=56/81-1/81`
`4x+13/27=55/81`
`4x=55/81-13/27`
`4x=55/81-52/81`
`4x=16/81`
`x=4/108`
Vậy `x=4/108`
Cho x ≠ 0,y ≠ 0,z ≠ 0 và x+y+z=0.CMR:\(\left(\dfrac{x-y}{z}+\dfrac{y-z}{x}+\dfrac{x-z}{y}\right)\left(\dfrac{z}{x-y}+\dfrac{x}{y-z}+\dfrac{y}{x-z}\right)=9\)
Đặt \(\dfrac{x-y}{z}=m,\dfrac{y-z}{x}=n,\dfrac{z-x}{y}=p\), ta có:
\(\left(m+n+p\right)\left(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}\right)=3+\dfrac{n+p}{m}+\dfrac{p+m}{n}+\dfrac{m+n}{p}\)
Tính \(\dfrac{n+p}{m}\) theo x, y, z ta được:
\(\dfrac{n+p}{m}=\dfrac{z}{x-y}.\dfrac{y^2-yz+xz-x^2}{xy}=\dfrac{z}{xy}\left(-x-y+x\right)\)
\(=\dfrac{z}{xy}\left(-x-y-z+2z\right)=\dfrac{2x^2}{xy}\) vì \(\left(x+y+z\right)=0\)
Tương tự: \(\dfrac{m+p}{n}=\dfrac{2x^2}{yz}.\dfrac{m+n}{p}=\dfrac{2y^2}{xz}\)
Vậy \(\left(m+n+p\right)\left(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}\right)=3+\dfrac{2\left(x^3+y^3+z^3\right)}{xyz}=3+\dfrac{2.3xyz}{xyz}=3+6=9\)
1) Giải phương trình: a) \(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{91}}=0\) b) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\dfrac{1}{2}\left(x+y+z\right)\)
Ai giúp mình với, mình cần sự giúp đỡ, mai nộp bài rồi
Cho các số nguyên x,y,z thỏa mãn x+y+z=(x-y)(y-z)(z-x)
CMR M= (x-y)^3+(y-z)^3+(z-x)^3 chia hết cho 81
Đag cần gấp ạ
Cho x,y,z>0 thỏa mãn x+y+z=1.CMR:\(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{9}{4}\)
từ đề bài ta có bất đẳng thức cần chứng minh tương đương:
\(3+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{9}{4}\)
<=>\(\dfrac{3}{4}+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
ta có \(\dfrac{3}{4}+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{3}{4}+\dfrac{z+y}{4x}+\dfrac{x+z}{4y}+\dfrac{x+y}{4z}=\dfrac{3}{4}+\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{4}=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(đpcm\right)\)Dấu "=" xảy ra khi x=y=z=\(\dfrac{1}{3}\)