Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Anh Thư
Xem chi tiết
Cuber Việt
Xem chi tiết
Mai Phương Nguyễn
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
12 tháng 12 2021 lúc 1:10

S = \(\left(1+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)

\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)

\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1010}\right)\)

\(\dfrac{1}{1011}+\dfrac{1}{1012}+...+\dfrac{1}{2021}\)

Trịnh Hải Minh
30 tháng 4 2024 lúc 19:15

S=P nhé

 

Trần Đức Vinh
Xem chi tiết
The darksied
28 tháng 2 2023 lúc 1:09

Nhận xét nè: ở mẫu số tại các phân số có tử số + mẫu số = 2012. Vì vậy mục tiêu là tạo ra con 2012 ở các phân số của mẫu số. E xử con tử số ở phân số mẫu số sao cho ra con 2012 là được =))

TalaTeleĐiĐâuĐấy?
Xem chi tiết
Nguyễn Thị Huyền Trang
4 tháng 1 2024 lúc 20:21

S   = 1/3 + 1/3^2 + 1/3^3 + 1/3^4 + ... + 1/3^99 + 1/3^100

3S = 1 +1/3 +1/3^2 +1/3^3 + ... + 1/3^98 +1/3^99

3S - S = ( 1 + 1/3 + 1/3^2 +1/^3 + ... + 1/3^98 +1/3^99 ) - ( 1/3 + 1/3^2 + 1/3^3 + 1/3^4 +... + 1/3^99 + 1/3^100 )

2S = 1 - 1/3^100

S   = (1 - 1/3^100). 1/2

Vũ Thị Nhung
Xem chi tiết
Nguyen Thi Huyen
6 tháng 3 2018 lúc 23:04

a) Giải

Ta có: \(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}+\dfrac{1}{2^{2013}}\)

\(\Rightarrow2S=\dfrac{2}{2}+\dfrac{2}{2^2}+\dfrac{2}{2^3}+...+\dfrac{2}{2^{2012}}+\dfrac{2}{2^{2013}}\)

\(2S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}\)

\(\Rightarrow2S-S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{2012}}-\dfrac{1}{2^{2013}}\)

\(\Rightarrow S=1-\dfrac{1}{2^{2013}}\)
\(\Rightarrow S=\dfrac{2^{2013}-1}{2^{2013}}\)

Nguyen Thi Huyen
6 tháng 3 2018 lúc 23:22

b) Giải

Từ \(A=\dfrac{2011^{2012}+1}{2011^{2013}+1}\)

\(\Rightarrow2011A=\dfrac{2011^{2013}+20111}{2011^{2013}+1}=\dfrac{2011^{2013}+1+2010}{2011^{2013}+1}=1+\dfrac{2010}{2011^{2013}+1}\)

Từ \(B=\dfrac{2011^{2013}+1}{2011^{2014}+1}\)

\(\Rightarrow2011B=\dfrac{2011^{2014}+2011}{2011^{2014}+1}=\dfrac{2011^{2014}+1+2010}{2011^{2014}+1}=1+\dfrac{2010}{2011^{2014}+1}\)

Vì 20112013 + 1 < 20112014 + 1 và 2010 > 0

\(\Rightarrow\dfrac{2010}{2011^{2013}+1}>\dfrac{2010}{2011^{2014}+1}\)

\(\Rightarrow2011A>2011B\)

\(\Rightarrow A>B\)

Vậy A > B.

quy pham
Xem chi tiết
Nguyễn Đức Minh
11 tháng 5 2022 lúc 14:24

ơi

Nguyễn Đức Minh
11 tháng 5 2022 lúc 14:24

Nguyễn Đức Minh
11 tháng 5 2022 lúc 14:24

không

Lê Ngọc Anh
Xem chi tiết
Nguyễn Quý Vương
17 tháng 3 2022 lúc 8:51

1)\(\dfrac{-5}{2}:\dfrac{1}{4}\) = \(\dfrac{-5}{2}\) x \(\dfrac{4}{1}\) = \(\dfrac{-20}{2}\)

dâu cute
17 tháng 3 2022 lúc 8:52

1) \(\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{1}{2}\right)\) \(=\dfrac{-5}{2}:\dfrac{1}{4}=-10\)

 

Thảo Nguyễn
Xem chi tiết
chuche
12 tháng 4 2022 lúc 18:03

2 điểm!?

laala solami
12 tháng 4 2022 lúc 18:03

thi hay sao?

Nguyễn Công Danh
24 tháng 5 2022 lúc 9:08

S= 1/1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729

S= 3 x ( 1/1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729 )

S = 3 +1 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729

S= 3 +1 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729 - 1 - 1/9 -1/27 - 1/81 - 1/243 - 1/729

S = 3 - 1/729 

S= 142/729