Lời giải:
Ta biết công thức tính tổng các số tự nhiên từ $1$ đến $n$
\(1+2+3....+n=\frac{n(n+1)}{2}\Rightarrow \frac{1}{1+2+...+n}=\frac{2}{n(n+1)}\)
Do đó:
\(S=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2011.2012}\)
\(S=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2011.2012}\right)\)
\(S=2\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{2012-2011}{2011.2012}\right)\)
\(S=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2011}-\frac{1}{2012}\right)\)
\(S=2\left(1-\frac{1}{2012}\right)=\frac{2011}{1006}\)