\(D=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}}{\dfrac{2011}{1}+\dfrac{2010}{2}+...+\dfrac{1}{2011}}\)
Ta có mẫu của phân số trên là :
\(\dfrac{2011}{1}+\dfrac{2010}{2}+...+\dfrac{1}{2011}\)
\(=\left(\dfrac{2010}{2}+1\right)+\left(\dfrac{2009}{3}+1\right)+...+\left(\dfrac{1}{2011}+1\right)+1\)
=\(\dfrac{2012}{2}+\dfrac{2012}{3}+\dfrac{2012}{4}+...+\dfrac{2012}{2011}+\dfrac{2012}{2012}\)
=\(2012\left(\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2012}\right)\)
Từ đó suy ra :
\(D=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}}{2012\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)}=\dfrac{1}{2012}\)
Vậy \(D=\dfrac{1}{2012}\)
Nhớ tịk cho mink nhé