Cho ΔABC có góc BAC = \(40^0\). Gọi D và E là các điểm tương ứng trên cạnh AC và AB sao cho góc CBD=\(70^0\).Giả sử BD cắt CE tại F.CMR \(AF\perp BC\)
cho tam giác ABC có góc BAC=40 độ, góc ABC=60 độ. Gọi D và E là các điểm tương ứng trên AC và AB sao cho góc CBD=40 độ, góc BCE=70 độ. Giả sử BD cắt CE tại F. Chứng minh AF vuông góc với BC
Cho \(\Delta ABC\)có \(\widehat{BAC}=40^0,\widehat{ABC}=60^0.\)Gọi D và E là các điểm tương ứng trên AC và AB sao cho \(\widehat{CBD}=40^0,\widehat{BCE}=70^0\). BD cắt CE tại F. CMR\(AF\perp BC\)
Trên cạnh BA của \(\Delta\)ABC lấy điểm G sao cho BG = BC. Ta có:
^CFB = 1800 - ^BCF - ^CBF = 1800 - ^BCE - ^CBE = 700 => ^CFB = ^BCF (=700)
=> \(\Delta\)CBF cân tại B => BF = BC = BG => \(\Delta\)GBF cân tại B => ^BGF = (1800 - ^GBF)/2 = 800
=> ^FGA = 1000. Gọi GF cắt AC tại L. Trên đoạn GL lấy điểm F' sao cho ^CAF' = 100
Qua F' dựng đường thẳng song song với AB, đường thẳng này cắt AC tại H
Trên nửa mặt phẳng bờ AB có chứa điểm C, dựng \(\Delta\)GAK đều
Xét \(\Delta\)ALG: ^LGA = 1000 (cmt), ^LAG = 400 => \(\Delta\)ALG cân tại G => \(\Delta\)LF'H cân tại F' (F'H // AG)
Xét \(\Delta\)CLG: ^GCL = ^ACB - ^BCG = 200, ^CLG = 1800 - ^GLA = 1400 => \(\Delta\)CLG cân tại L
Có ^GAF' = ^BAC - ^CAF' = 300 = ^GAK/2 => ^GAF' = ^KAF'. Từ đây dễ có \(\Delta\)F'GA = \(\Delta\)F'KA (c.g.c)
=> F'G = F'K => \(\Delta\)GF'K cân tại F'. Do ^F'GK = ^F'GA - ^KGA = 400 nên ^GF'K = 1000
Suy ra ^GF'K = ^HF'L (= ^AGL = 1000) => ^GF'H = ^KF'L (= 1000 - ^KF'H)
Kết hợp với F'H = F'L; F'G = F'K (cmt) suy ra \(\Delta\)HF'G = \(\Delta\)LF'K (c.g.c) => ^F'LK = ^F'HG
Dễ dàng tính được ^F'LK = ^GLK = (1800 - 400)/2 = 700 => ^F'HG = 700 => ^HGA = 700 (Vì F'H // AG)
Ta thấy \(\Delta\)AGH có ^GAH = 400 , ^HGA = 700 => \(\Delta\)AGH cân tại A
Từ đó AH = AG = GL = CL (Vì các tam giác AGL, CLG cân). Dễ dàng chứng minh:
\(\Delta\)CLF' = \(\Delta\)AHF' (c.g.c) (F'L = F'H, ^F'LC = ^F'HA, CL = AH) => ^LCF' = ^HAF' = ^CAF' = 100
=> ^BCF' = 700 = ^BCE => CF' trùng CE. Ban đầu ta nhận thấy CE cắt GL tại F
Mà CF' trùng CE, F' thuộc GL nên F' trùng F. Tức là ^CAF = ^CAF' = 100 => ^CAF + ACB = 900
Vậy thì AF vuông góc với BC (đpcm).
cho tam giác ABC có góc BAC=40 đô và góc ABC=60 độ.2điểm D và E lần lượt thuộc cạnh AC; AB sao cho góc CBD=40 độ và góc BCE=70 độ. Gọi F là giao điểm của BD và CF. chứng minh AF vuông góc với BC
Cho tam giác cân ABC ;đáy BC,góc BAC=20o . Trên cạnh AB lấy điểm E sao cho góc BCE = 50o . Trên cạnh AC lấy điểm D sao cho góc CBD= 60o . Qua D kẻ đường thẳng song song với BC , nó cắt AB tại F . Gọi O là giao điểm của BD và CF
a. Chứng minh tam giác AFC= tam giác ADB
b. CM tam giac OFD và tam giác OBC là các tam giác đều
c. Tính góc EOB
d. CM tam giác EFD = tam giác EOD
e. Tính góc BDE
cho △ ABC cân tại A góc BAC =20 độ trên cạnh AB lấy điểm E sao cho góc BCE =50 độ trên cạnh AC lấy điểm D sao cho góc CBD =60 độ qua d vẽ đường thẳng // với BC nó cắt AB tại F gọi O là giao điểm của CF và BD a c/m ΔAFC =ΔADB b c/m ΔOFD ,ΔOBC là các tam giác đều c tính góc EOB d c/m ΔEFD = ΔEOD
a) Do DF//BC⇒ˆAFD=ˆABCDF//BC⇒AFD^=ABC^ (hai góc ở vị trí đồng vị)
ˆADF=ˆACBADF^=ACB^ (hai góc ở vị trí đồng vị)
mà ΔABCΔABC cân đỉnh A nên ˆABC=ˆACBABC^=ACB^
⇒ˆAFD=ˆADF⇒ΔAFD⇒AFD^=ADF^⇒ΔAFD cân đỉnh A
⇒AF=AD⇒AF=AD
Xét ΔAFCΔAFC và ΔADBΔADB có:
AF=ADAF=AD (cmt)
ˆAA^ chung
AC=ABAC=AB (do ΔABCΔABC cân đỉnh A)
⇒ΔAFC=ΔADB⇒ΔAFC=ΔADB (c.g.c) (đpcm)
b) ⇒ˆACF=ˆABD⇒ACF^=ABD^ (hai góc tương ứng)
⇒ˆABC−ˆABD=ˆACB−ˆACF⇒ABC^−ABD^=ACB^−ACF^
⇒ˆDBC=ˆFCB⇒DBC^=FCB^
⇒ΔOBC⇒ΔOBC cân đỉnh O mà ˆCBD=60oCBD^=60o (giả thiết)
⇒ΔOBC⇒ΔOBC đều
c) Xét ΔABCΔABC cân đỉnh A có:
⇒ˆEOB=180o−ˆEBO2=180o−20o2=80o⇒EOB^=180o−EBO^2=180o−20o2=80o
(ˆEBO=ˆEBC−ˆOBC)=80o−60o=20o(EBO^=EBC^−OBC^)=80o−60o=20o
d) Xét ΔFBCΔFBC có: ˆBFC=180o−ˆFBC−ˆFCBBFC^=180o−FBC^−FCB^
=180o−80o−60o=40o=180o−80o−60o=40o
ˆEOF=180o−ˆEOB−ˆBOC=180o−80o−60o=40oEOF^=180o−EOB^−BOC^=180o−80o−60o=40o
⇒ˆEFO=ˆEOF=40o⇒ΔEFO⇒EFO^=EOF^=40o⇒ΔEFO cân đỉnh E ⇒EF=EO⇒EF=EO (1)
Ta có: ΔODFΔODF có: ˆFOD=ˆBOC=60oFOD^=BOC^=60o (đối đỉnh)
ˆDFO=ˆOBC=60oDFO^=OBC^=60o (hai góc ở vị trí so le trong)
⇒ΔODF⇒ΔODF đều ⇒DF=DO⇒DF=DO (2)
Và DEDE chung (3)
Từ (1), (2) và (3) suy ra ΔEFD=ΔEODΔEFD=ΔEOD (c.c.c) (đpcm)
chúc bạn học tốt
Cho ABC có 0 A 90 và AB < AC. Tia phân giác của góc B cắt cạnh AC tại D. Trên BC lấy điểm E sao cho BE = BA. a) Chứng minh: ABD EBD . b) Kéo dài ED và BA, chúng cắt nhau tại F. Chứng minh: AF = CE. c) Gọi M là trung điểm của đoạn thẳng CF. Chứng minh FBM CBM và ba điểm B, D, M thẳng hàng.
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
cho ΔABC có 3 góc nhọn (AB<AC) các đường cao AF, BD, CE cắt nhau tại Q gọi O,I lần lượt là trung điểm của BC, AQ.
a) CM: AE.AB=AD.AC và góc ADE=góc ABC
b) CM: B,E,D,C cách đều điểm I
c) CM: OD⊥DI
Giúp mk vs
a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔADB\(\sim\)ΔAEC(g-g)
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AB=AD\cdot AC\)
Ta có: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(cmt)
nên \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét ΔADE và ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)
\(\widehat{EAD}\) chung
Do đó: ΔADE\(\sim\)ΔABC(c-g-c)
Suy ra: \(\widehat{ADE}=\widehat{ABC}\)(hai góc tương ứng)
b) Sửa đề: Cách đều điểm O
Ta có: ΔEBC vuông tại E(gt)
nên E,B,C cùng nằm trên đường tròn đường kính BC
hay E,B,C cùng nằm trên (O)(1)
Ta có: ΔDBC vuông tại D(gt)
nên D,B,C cùng nằm trên đường tròn đường kính BC
hay D,B,C cùng nằm trên (O)(2)
Từ (1) và (2) suy ra E,B,C,D cùng nằm trên (O)
Cho tam giác ABC có AB = AC, M là trung điểm của cạnh BC. Trên tia đối của các tia BC và CB lấy tương ứng hai điểm D và E sao cho BD = CE. Chứng minh rằng AM là tia phân giác chung của góc BAC và goác DAE.
vì tam giác ABC cân có AM trug tuyến => AM cx là phân giác góc BAC
Xét tam giác ABD và ACE có
AB=AC
DB=CE
góc ABD=ACE = 180 độ - góc B
=> 2 tam giác = nhau
=> góc DAB=ECA mà góc BAM =MAC (cmt)
=> AM là pg góc DAE
cho tam giác ABC có góc BAC=40 đô và góc ABC=60 độ.2điểm D và E lần lượt thuộc cạnh AC; AB sao cho góc CBD=40 độ và góc BCE=70 độ. Gọi F là giao điểm của BD và CF. chứng minh AF vuông góc với BC
ai nhanh nhất 2tk luôn (đảm bảo)