cho tam giác abc.gọi m,n theo thứ tự là trung điểm của ab,ac.vẽ bp vuông góc với mn, cq vuông góc với mn, ah vuông góc với mn
1) chứng minh tam giác bpqc là hình chữ nhật
2) chứng minh rằng diện tích bpqc= diện tích tam giác abc
Cho hình chữ nhật ABCD, AB=8, BC=6. Kẻ AH vuông góc BD.
a) Tính AH?
b) Chứng minh : Tam giác ADH đồng dạng với tan giác ACB
c) M,N lần lượt là trung điểm của DH, BC.
Chứng minh : Tam giác ADM đồng dạng với tam giác ACN
d) Chứng minh : AM vuông góc MN
Cho hình chữ nhật ABCD . Kẻ BP vuông góc với AC . Gọi M , N lần lượt là trung điểm của AP và CD . Kẻ CQ vuông góc với BM ở Q và cắt BP ở E .
a. Chứng minh ME vuông góc BC .
b. Tứ giác MNCE là hình gì?Vì sao?
c. Chứng minh BM vuông góc với MN
Cho hình chữ nhật ABCD . Kẻ BP vuông góc với AC . Gọi M , N lần lượt là trung điểm của AP và CD . Kẻ CQ vuông góc với BM ở Q và cắt BP ở E .
a. Chứng minh ME vuông góc BC .
b. Tứ giác MNCE là hình gì?Vì sao?
c. Chứng minh BM vuông góc với MN
a) ∆MBC có hai đường cao BP và CQ cắt nhau tại E nên E là trực tâm của tam giác => ME là đường cao thứ ba => ME⊥BC (đpcm)
b) ABCD là hình chữ nhật (1) nên AB⊥BC kết hợp với ME⊥BC => ME // AB (2) mà M là trung điểm của AP nên E là trung điểm của BP => ME là đường trung bình của ∆APB => ME = 1/2AB và NC = 1/2CD (gt) nên ME = NC (do AB = CD)
Từ (1) và (2) suy ra ME//NC
Tứ giác MNCE có ME = NC và ME//NC nên là hình bình hành
c) Tứ giác MNCE là hình bình hành nên ^NMC = ^MCE
Mà ^MCE + ^CMQ = 900 (∆MCQ vuông tại Q) nên ^NMC + ^CMQ = 900 => NMQ = 900 => BM vuông góc với MN (đpcm)
Cho hình chữ nhật ABCD . Kẻ BP vuông góc với AC . Gọi M , N lần lượt là trung điểm của AP và CD . Kẻ CQ vuông góc với BM ở Q và cắt BP ở E .
a. Chứng minh ME vuông góc BC .
b. Tứ giác MNCE là hình gì?Vì sao?
c. Chứng minh BM vuông góc với MN
Cho tam giác ABC vuông tại A;AB=3cm; AC=4cm đường cao AH.kẻ HE vuông góc (E thuộc AB),HF vuông góc với AV (F thuộc AC) a)Chứng minh EF=AH b)Tính diện tích tam giác ABC và độ dài đoạn thẳng AH c) Goih M,N theo thứ tự là trung điểm của HB,HC.Tứ giác MNFE là hình gì?Vì sao?
a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>EF=AH
b: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot4=2\cdot3=6\left(cm^2\right)\)
\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
cho tam giác ABC có 3 góc nội tiếp đường tròn tâm O bán kính R và AH là đường cao của tam giác ABC.Gọi M,N thứ tự là hình chiếu của H trên AB,AC.
1,chứng minh rằng tứ giác AMHN là yws giác nội tiếp
2,chứng minh góc ABC bằng góc ANM
3,chứng minhOA vuông góc với MN.
4,cho biết AH=R.\(\sqrt{2}\).Chứng minh M.O.N thẳng hàng
Cho hình chữ nhật ABCD . Kẻ BP vuông góc với AC ở K . Gọi M , N lần lượt là trung điểm của AP và CD . Kẻ CQ vuông góc với BM ở Q và cắt BP ở E .
a. Chứng minh ME vuông góc BC .
b. Tứ giác MNCE là hình gì?Vì sao?
c. Chứng minh BM vuông góc với MN
Kẻ BP vuông góc với AC nhé! ko phải ở K đâu
Tam giác ABC vuông tại A . Kẻ đường cao AH . Gọi D , E là các hình chiếu của H trên AB , AC và M , N theo thứ tự là các trung điểm của các đoạn thẳng BH , CH
chứng minh AH=DE
chứng minh tứ giác MDEN là hình thang vuông
Gọi P là giao điểm của đườn thẳng DE với đườn cao AH và Q là trung điểm của đoạn thẳng MN . Chứng minh PQ vuông góc với DE
chứng minh P là trực tâm tam giác ABN
chứng minh diện tích tam giác ABC = 2 lần diện tích tứ giác MDEN
1. qua de roi dung dinh li hinh chu nhat.
2.vi tam gic BDH vuong tai D co DM la duong trung tuyen nen DM=MN=BH/2
=>goc MDH = goc MHD(1)
tam gic DHE vuong tai H co HP la duong trung tuyen nen HP =DP=DE/2
=>goc HDP =goc DHP(2)
TU (1)(2) ma goc MHD+goc DHP=90
=.goc MDH +goc HDP=90=goc MDP
Tuong tu cm duoc goc NED=90
=>MDEN la hinh thanh vuong
3.dung dinh ly duong trung binh cua hinh thang
4.de dang cm duoc PN la duong trung binh tam giacHAC
=>PN //AC=>PN vuông góc với AB mà AH vuông góc với BC vá cắt PN tại P=>P la truc tam cua tam giac ABN
5.Ta co DM=BH/2
EN=HC/2
=>DM+EN=BC/2 (1)
Ta có S MNED = (MD+EN).DE/2 (2)
S ABC=AH.BC/2 (3)
AH=DE(4)
Tu (1)(2)(3)(4)=>S MNED=SABC/2
Cho tam giác MNP vuông tại M (MN<MP). Gọi I là trung điểm của NP. Vẽ IH vuông góc với MN tại H, IK vuông góc với MP tại K. Chứng minh tứ giác MHIK là hình chữ nhật.
xét tứ giác MHIK có
góc IHM=IKM=HMK=90
=>MHIK là hình chữ nhật