xác định a sao cho x^4+ax^2+1 chia hết cho x^2+2x+1,giúp vs mn ơi
Bài 1: Xác định a, b sao cho x3+ax+b chia hết cho (x+1) dư 7, chia cho (x-3) dư -5
Bài 2: Xác định a sao cho:
a) x3+ax2-4 chia hết cho x2+4x+4
b) 2x2+ax+1 chia hết cho x-3 dư 4
Xác định các số a , b sao cho
a , 10x^2 - 7x + a chia hết cho 2x -3
b, 2x^2 + ax + 1 : x -3 dư 4
c, x^4 + ax + b chia hết cho x^2 - 4
d,x^4 + ax^2 + b chia hết cho x^2 -x+1
Xác định các hằng số a và b sao cho
a) x^4 + ax + b chia hết cho x^2 - 4
b) x^4 + ax^ + bx - 1 chia hết cho x^2 - 1
c) x^3 + ax + b chia hết cho x^2 + 2x - 2
(Chia đa thức cho đa thức)
Chỉ ý kiến của mk thôi
chưa chắc đúng
Tham khảo nhé
Xác định các hằng số a,b sao cho
a) x4+ax3+bx-1 chia hết cho x2-1
b) x3+ax+b chia hết cho x2+x-2
Mn giúp mik với
Xác định số hữu tỉ a, sao cho a) 2x^2+x+a chia hết cho x +3 b) x^3+ax^2-4 chia hết cho x^2+4x+4 Mình cần gấp giúp mình với
\(a,\Leftrightarrow2x^2+x+a=\left(x+3\right)\cdot g\left(x\right)\\ \text{Thay }x=-3\Leftrightarrow18-3+a=0\Leftrightarrow a=-15\\ b,\Leftrightarrow x^3+ax^2-4=\left(x^2+4x+4\right)\cdot f\left(x\right)=\left(x+2\right)^2\cdot f\left(x\right)\\ \text{Thay }x=-2\Leftrightarrow-8+4a-4=0\\ \Leftrightarrow4a-12=0\Leftrightarrow a=3\)
xác định số hữu tỉ a sao cho:
1) 2x2 +ax - 4 chia hết cho x+4
2) x3 + ax2 + 5x +3 chia hết cho x2 +2x +3
3) x2 - ax - 5a2 -1/4 chia hết cho x + 2a
ai giúp mik với
xác định hệ số a, b
a, 10x^2-7x +a chia hết cho 2x-3
b, 2x^2+ax+1 chia cho x-3 dư 3
c, ax^5+5x^4-9 chia hết cho (x-1)^2
d, x^4+4 chia hết cho x^2+ax+b
e, x^2+ax+b chia hết cho x^2+x-2
Xác định a.b sao cho :
a/ 2x2 + ax + 1 chia cho x - 3 dư 4
b/ x4 + ax2 + b chia hết cho x2 - x + 1
Lời giải:
a) Áp dụng định lý Bê-du về phép chia đa thức ta có:
Số dư khi chia đa thức \(f(x)=2x^2+ax+1\) cho $x-3$ là \(f(3)\)
Ta có:
\(f(3)=4\)
\(\Leftrightarrow 2.3^2+a.3+1=4\Rightarrow a=-5\)
b) Ta thêm bớt để đa thức $x^4+ax^2+b$ xuất hiện $x^2-x+1$
\(x^4+ax^2+b=(x^4+x)+ax^2-x+b\)
\(=x(x^3+1)+a(x^2-x+1)+ax-x-a+b\)
\(=x(x+1)(x^2-x+1)+a(x^2-x+1)+x(a-1)+(b-a)\)
\(=(x^2-x+1)(x^2+x+a)+x(a-1)+(b-a)\)
Từ trên suy ra đa thức $x^4+ax^2+b$ khi chia cho đa thức $x^2-x+1$ thì dư \(x(a-1)+(b-a)\)
Để phép chia là chia hết thì :
\(x(a-1)+(b-a)=0, \forall x\Leftrightarrow \left\{\begin{matrix} a-1=0\\ b-a=0\end{matrix}\right.\Rightarrow a=b=1\)
xác định số hữu tỉ a , b sao cho :
a) 10x2 - 7x + a chia hết cho 2x - 3
b) 2x2 + ax - 4 chia hết cho x + 4
d) 2x3 - x2 + ax + b chia hết cho x2 - 1
d) 3x3 + ax2 + bx + 9 chia hết cho x2 - 9
a: \(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)
=>a+12=0
hay a=-12
b: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4a-32-4a+28⋮x+4\)
=>-4a+28=0
=>a=7
c: \(\Leftrightarrow2x^3-2x-x^2+1+\left(a+2\right)x+b-1⋮x^2-1\)
=>a+2=0 và b-1=0
=>a=-2 và b=1