cho tam giác ABC vuông cân tại B . Gọi L là trung điểm của BC . Trên cạnh AC lấy P sao cho AN vuông góc với BP . cho CP=căn 2 . Tính AB
Cho tam giác ABC vuông cân tại B, L là trung điểm cạnh BC và P là điểm trên cạnh CA sao cho BP vuông góc với AL. Biết \(CP=\sqrt{2}cm\). Tính AB
Trên AB lấy trung điểm M, kẻ MN vuông góc với AL ( N thuộc AC)
Qua C kẻ CQ vuông góc với AL tại E, cắt AB tại Q
Xét \(\Delta CLE\) và \(\Delta CQB\) có:
\(\widehat{CEL}=\widehat{CBQ}=90^0\)
\(\widehat{BCQ}\) chung
suy ra: \(\Delta CLE~\Delta CQB\) (g.g)
\(\Rightarrow\)\(\widehat{CLE}=\widehat{CQB}\)
mà \(\widehat{CLE}=\widehat{BLA}\) (đối đỉnh)
suy ra: \(\widehat{BLA}=\widehat{BQC}\)
Xét \(\Delta ABL\)và \(\Delta CBQ\)có:
\(\widehat{ABL}=\widehat{CBQ}=90^0\)
\(AB=AC\) (gt)
\(\widehat{BAL}=\widehat{BCQ}\) (do cùng phụ với 2 góc bằng nhau)
suy ra: \(\Delta ABL=\Delta CBQ\) (g.c.g)
suy ra: \(BL=BQ\)
mà \(BL=BM=AM\)
\(\Rightarrow\)\(AM=MB=MQ\)
mà \(MN//BP//QC\) (cùng vuông góc với AL)
\(\Rightarrow\)\(AN=NP=PC\)
\(\Rightarrow\)\(AC=3CP\)
\(\Rightarrow\)\(AC=3\sqrt{2}\)
Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(AC^2=AB^2+BC^2\)
\(\Leftrightarrow\)\(AC^2=2AB^2\) (do AB = BC)
\(\Leftrightarrow\)\(AB^2=\frac{AC^2}{2}\)
\(\Leftrightarrow\)\(AB^2=9\)
\(\Leftrightarrow\)\(AB=3\)
Vậy..
p/s: tham khảo nhé
Thật tốt, 14 năm ms gặp 1 người ... như bạn )
*Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC, P là 1 điểm trên AC ( P# Ava C).
Kẻ AN vuông góc với BP(N thuộc BP) .Trên BN lấy điểm I sao cho BI = AN.
a) CMR: Tam giác M I N vuông cân.
b) Cho SABC = 4.SIMN. Tính góc ABP ?
Cho tam giác ABC cân tại A, AD là tia phân giác của góc BAC, D thuộc BC
a) CM : △ ABD = △ ACD
b) CM : AD là đường trung trực của BC
c) Kẻ DM vuông góc với AB trên cạnh AC lấy điểm N sao cho AM = AN
CM :△ ADM = △ADM , DN vuông góc với AC
d) Gọi K là trung điểm của CN trên tia đối của tia KD lấy điểm E sao cho KE = KD
CM : 3 điểm M,N,E thẳng hàng
a) Do AD là tia phân giác của ∠BAC (gt)
⇒ ∠BAD = ∠CAD
Do ∆ABC cân tại A
⇒ AB = AC
Xét ∆ABD và ∆ACD có:
AB = AC (cmt)
∠BAD = ∠CAD (cmt)
AD là cạnh chung
⇒ ∆ABD = ∆ACD (c-g-c)
⇒ BD = CD
⇒ D là trung điểm của BC (1)
Do ∆ABD = ∆ACD (cmt)
⇒ ∠ADB = ∠ADC (hai góc tương ứng)
Mà ∠ADB + ∠ADC = 180⁰ (kề bù)
⇒ ∠ADB = ∠ADC = 180⁰ : 2 = 90⁰
⇒ AD ⊥ BC (2)
Từ (1) và (2) ⇒ AD là đường trung trực của BC
b) Sửa đề: Chứng minh ∆ADM = ∆ADN
Do ∠BAD = ∠CAD (cmt)
⇒ ∠MAD = ∠NAD
Xét ∆ADM và ∆ADN có:
AD là cạnh chung
∠MAD = ∠NAD (cmt)
AM = AN (gt)
⇒ ∆ADM = ∆ADN (c-g-c)
⇒ ∠AMD = ∠AND = 90⁰ (hai góc tương ứng)
⇒ DN ⊥ AN
⇒ DN ⊥ AC
d) Do K là trung điểm của CN (gt)
⇒ CK = KN
Xét ∆DKC và ∆EKN có:
CK = KN (cmt)
∠DKC = ∠EKN (đối đỉnh)
KD = KE (gt)
⇒ ∆DKC = ∆EKN (c-g-c)
⇒ ∠KDC = ∠KEN (hai góc tương ứng)
Mà ∠KDC và ∠KEN là hai góc so le trong
⇒ EN // CD
⇒ EN // BC (3)
∆AMN có:
AM = AN (gt)
⇒ ∆AMN cân tại A
⇒ ∠AMN = (180⁰ - ∠MAN) : 2
= (180⁰ - ∠BAC) : 2 (4)
∆ABC cân tại A (gt)
⇒ ∠ABC = (180⁰ - ∠BAC) : 2 (5)
Từ (4) và (5) ⇒ ∠AMN = ∠ABC
Mà ∠AMN và ∠ABC là hai góc đồng vị
⇒ MN // BC (6)
Từ (3) và (6) kết hợp với tiên đề Euclide ⇒ M, N, E thẳng hàng
Câu 1: Cho tam giác ABC cân tại A. Kẻ qua B tia Bx vuông góc với AB, kẻ qua C tia Cy vuông góc với AC. Gọi I là giao điểm của Bx và Cy. CMR:
a, Tam giác ABI = tam giác ACI
b, AI là trung trực của BC
Câu 2: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N, sao cho BM=CN
a, CM tam giác AMN cân
b, Kẻ BH vuông góc với AM, CK vuông góc với AN. CMR BH = CK
c, Gọi O là giao điểm của BH và CK. CM tam giác OBC cân
d, Gọi D là trung điểm của BC. CMR 3 điểm A,D,O thẳng hàng
Câu 3: Cho tam giác ABC cân tại A, M là trung điểm của BC
a, CM tam giác ABM = tam giác ACM
b, CM AM vuông góc với BC
c, Trên cạnh AB lấy điểm E, trên cạnh CA lấy điểm F, sao cho BE = CF. CM tam giác EBC = tam giác FCB
d, CM EF//BC
@Hoàng Thị Tuyết Nhung bạn làm giúp mình câu 1 thôi nha
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh AC, trên tia BM lấy điểm N sao cho M là trung điểm của đoạn BN. Chứng minh:
a) CN vuông góc với AC và CN = AB;
b) AN = BC và AN song song với BC.
a: Xét ΔCMN và ΔAMB có
MC=MA
\(\widehat{CMN}=\widehat{AMB}\)
MN=MB
Do đó: ΔCMN=ΔAMB
Suy ra: \(\widehat{MCN}=\widehat{MAB}\) và CN=AB
hay CN\(\perp\)AC
1) Cho tam giác ABC vuông tại A ( AB > AC ) . Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên cạnh AB lấy điểm E sao cho AC = AE
a) Chứng minh rằng : tam giác ABC = tam giác ADE
b) Gọi M , N lần lượt là trung điểm của DE và BC. Chứng minh tam giác ADM = tam giác ABN và tam giác AMN vuông cân
c) Qua E kẻ EH vuông góc với BC tại H. Chứng minh rằng 3 điểm D ; E ; H thẳng hàng và CE vuông góc với BD
Xét ΔADE và ΔABC có :
AD = AB (gt)
góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC
CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn
Cho tam giác ABC vuông cân tại A, có góc C = 30 độ, đường cao AH. Trên Hc lấy D sao cho HB = HD. Từ C kẻ CE vuông góc với AD
a. Chứng minh tam giác ADB đều
b. Chứng minh EH // AC
c. Gọi M là trung điểm AC. Kẻ AN và CP vuông góc với BM. chứng minh BN + BP > 2AB
tự kẻ hình :
xét tam giác ADH và tam giác ABH có : AH chung
góc AHD = góc AHB = 90 do AH là đường cao (gt)
HD = HB (gt)
=> tam giác AHD = tam giác AHB (2cgv)
=> AdD = AB (đn)
=> tam giác AHB cân (đn) (1)
tam giác ABC vuông tại A (gt) => góc ABC + góc ACB = 90 (đl)
mà góc ACB = 30 (gt)
=> góc ABC = 60 (2)
(1)(2) => tam giác ADB đều (đl)
rồ à mấy bọn điên
bạn thiên đừng đăng linh tinh nha
Cho tam giác ABC vuông tại A (AB>AC). Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Trên cạnh AB lấy điểm E sao cho AC=AE.
a) Chứng minh rằng: tam giác ABC = tam giác ADE.
b) Gọi M,N lần lượt là trung điểm của DE và BC. Chứng minh tam giác ADM=tam giác ABN và AMN vuông cân.
c) Qua E kẻ AH vuông góc với BC tại H. Chứng minh rằng 3 điểm D,E,H thẳng hàng và CE vuông góc với BD
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
Cho tam giác ABC vuông góc tại A trên cạnh BC lấy điểm E sao cho BE=BA. Tia phjan6 giác của góc B cắt AC tại D
a/ Chứng minh tam giác ABD =tam giác EBD
b/ DE vuông góc BC
c/ trên tia đối của tia AC lấy điểm M sao cho AM=AB trên cạnh AB lấy điểm N sao cho AN = AD. Chứng minh tam giác ABD=tam giác AMN
d/ gọi H là trung điểm MN , K là trung điểm BD . Chứng minh góc HAK = 90 độ